Download presentation
Presentation is loading. Please wait.
Published byGodfrey Dixon Modified over 8 years ago
1
Title goes here Building a superconducting quantum computer with the surface code Matteo Mariantoni Fall INTRIQ meeting, November 5 th & 6 th 2013
2
the DQM lab team Thomas G. McConkey Doctoral Student John R. Rinehart Doctoral Student Carolyn “Cary” T. Earnest Doctoral Student Corey Rae H. McRae Doctoral Student Jérémy Béjanin Master’s Student Yousef Rohanizadegan Research Assistant Matteo Mariantoni Principal Investigator Daryoush Shiri Postdoctoral Fellow Collaborators: 1)Prof. Michael J. Hartmann Heriot Watt University 2)Prof. Frederick W. Strauch Williams College 3)Prof. Adrian Lupaşcu IQC 4)Prof. Christopher M. Wilson IQC 5)Prof. Zbig R. Wasilewski WIN 6)Dr. Austin G. Fowler UC Santa Barbara 7)Prof. David G. Cory IQC 8)Prof. Guo-Xing Miao IQC 9)Prof. Roger G. Melko UW 10)Sadegh Raeisi IQC 11)Yuval R. Sanders IQC
3
lab virtual walkthrough the lab is being setup in these very days; it will be up and running by February 2014 photo credit BlueFors Cryogenics Oy DR
4
lab real walkthrough the lab is being setup in these very days; it will be up and running by February 2014
5
nano/micro meterspace milli kelvintemperature giga hertz frequency time on the edge nano/micro meterspace photo credit – M. Mariantoni and E. Lucero University of California Santa Barbara
6
on the edge milli kelvintemperature photo credit – BlueFors Cryogenics Oy
7
giga hertz frequency time on the edge photo credit – M. Mariantoni and E. Lucero
8
LC resonator superconducting quantum circuits
9
LC resonator superconducting quantum circuits ~ 7 GHz
10
dielectric material transmission-line resonator superconducting quantum circuits
11
coplanar waveguide resonator superconducting quantum circuits T 1 ~ 5 s T 2 ~ 2T 1 M. Mariantoni et al., Nature Phys. 7, 287 (2011)
12
Josephson junction → nonlinearity qubit superconducting quantum circuits
13
~ 7 GHz ~ 6.8 GHz an ~ 200 MHz superconducting quantum circuits qubit
14
superconducting quantum circuits qubit capacitor C inductor L junction T 1 ~ 500 ns T 2 ~ 150 ns M. Mariantoni et al., Nature Phys. 7, 287 (2011)
15
resonator + qubit superconducting quantum circuits resonator + qubit + control capacitor C inductor L junction X,Y ( , /2); Z g(C b ) ~ 100 MHz 10 ns M. Mariantoni et al., Nature Phys. 7, 287 (2011) A. Blais, R.-S. Huang, A. Wallraff, S.M. Girvin, and R.J. Schoelkopf, Phys. Rev. A 69, 062320 (2004); A. Wallraff et al., Nature (London) 431, 162 (2004)
16
one-qubit pulses and one-qubit quantum errors P.W. Shor, Phys. Rev. A 52, 2493 (1995)
17
Q1Q1 Q2Q2 M1M1 M2M2 B Z2Z2 Z1Z1 create, write, re-create, zero, read entanglement
18
i M. Mariantoni et al., Science 334, 61 (2011)
19
the CZ- gate qubit qutrit
20
phase qubit qutrit the CZ- gate
21
qutrit-resonator interaction the CZ- gate
22
qutrit-resonator interaction the CZ- gate
23
qutrit-resonator interaction the CZ- gate
24
resonant semi-resonant qutrit-resonator interaction the CZ- gate
25
resonant semi-resonant two-qubit CZ- gate the CZ- gate
26
resonant semi-resonant control target THEORY: F. W. Strauch et al., Phys. Rev. Lett. 91, 167005 (2003) G. Haack,…, M.M.,... et al., Phys. Rev. B 82, 024514 (2010) EXPERIMENT: L. DiCarlo et al., Nature (London) 460, 240-244 (2009) T. Yamamoto,…, M.M.,... et al., Phys. Rev. B 82, 184515 (2010) two-qubit CZ- gate the CZ- gate
27
resonant semi-resonant CZ- gate truth table control target the CZ- gate
28
resonant semi-resonant two-qubit CZ- gate the CZ- gate
29
resonant semi-resonant two-qubit CZ- gate the CZ- gate M. Mariantoni et al., Science 334, 61 (2011)
30
resonant semi-resonant M. Mariantoni et al., Science 334, 61 (2011) two-qubit CZ- gate the CZ- gate
31
-meter: Generalized Ramsey (a) the CZ- gate
32
i.compensate dynamic phase ii.varying z cmp Ramsey fringe -meter: Generalized Ramsey (a) the CZ- gate
33
-meter: Generalized Ramsey (b) the CZ- gate
34
-meter: Generalized Ramsey (a-b) the CZ- gate
35
-meter: Generalized Ramsey (a-b) the CZ- gate
36
= 0.01 = /2 = -meter: Generalized Ramsey (a-b) the CZ- gate
37
process tomography the CZ- gate fidelity ~70% fidelity ~60% qubit T 1 ~500 ns, T 2 ~150 ns
38
superconducting surface code A.G. Fowler, M. Mariantoni, J.M. Martinis, and A.N. Cleland, Phys. Rev. A 86, 032324 (2012) ~ 50 pages of details
39
2D lattice with nearest neighbor interactions A.G. Fowler, M. Mariantoni, J.M. Martinis, and A.N. Cleland, Phys. Rev. A 86, 032324 (2012) ~ 50 pages of details
40
data and syndrome qubit syndrome → measured data surface code
41
face and vertex A.Yu. Kitaev, Annals of Physics 303, 2 (2003) surface code
42
Z-stabilizer 1 23 4 stabilizers
43
Z-stabilizer 1 23 4 zeroing gate stabilizers
44
Z-stabilizer 1 23 4 projects stabilizers
45
X-stabilizer 1 23 4 projects stabilizers
46
one qubit qubit state destroyed
47
stabilizers
50
quiescent state +1 stabilizers
51
+1 quiescent state +1 +1 +1 +1 +1 +1 +1 stabilizers
52
quiescent state +1 +1 +1 +1 time quantum error detection
53
time +1 +1 +1 +1 bit-flip error quantum error detection
54
+1 +1 +1 +1 bit-flip error phase-flip error time protected memory +1 1)any error 2)boundaries 3)measurement errors “minimum weight matching” → polynomial +1 quantum error detection
55
+1 +1 +1 +1 +1 +1 +1 +1 error chains and logical qubits error on first qubit
56
+1 +1 +1 +1 +1 +1 +1 +1 error chains and logical qubits error on first qubit
57
+1 +1 +1 +1 +1 +1 +1 +1 error chains and logical qubits error on second qubit
58
+1 +1 +1 +1 +1 +1 +1 error chains and logical qubits error on second qubit
59
+1 +1 +1 +1 +1 +1 +1 error chains and logical qubits error on third qubit
60
+1 +1 +1 +1 +1 +1 +1 +1 error chains and logical qubits error on third qubit
61
+1 +1 +1 +1 +1 +1 +1 +1 error chains and logical qubits error on fourth qubit
62
+1 quiescent state +1 +1 +1 +1 +1 +1 +1 error chains and logical qubits
63
+1 +1 +1 +1 +1 +1 +1 +1 error chains and logical qubits error on last qubit
64
+1 +1 +1 +1 +1 +1 +1 +1 error chains and logical qubits error on third qubit
65
+1 +1 +1 +1 +1 +1 +1 +1 error chains and logical qubits back to original quiescent state
66
fault tolerance – surface codes physical → logical qubit = error rate 10 -14 A.G. Fowler et al., Phys. Rev. A 86, 032324 (2012)
67
fault tolerance – surface codes physical qubits → logical qubit = error rate 10 -14 1)nearest neighbor interactions 2)CNOT physical gates fast ~ 100 ns with F ≥ 99 % 3)readout fast ~ 100 ns with F ≥ 90 % 4)interface with classical electronics 5)overhead proof-of-concept → 3/5 physical qubits quantum memory → 10 10 = 10 2 physical qubits Shor → 10 3 to 10 4 physical qubits
68
A. Megrant et al., App. Phys. Lett. 100, 113510 (2012) fault tolerance – surface codes 1) CNOT physical gates R. Barends et al., Phys. Rev. Lett. 111, 080502 (2013) Xmon Xmon lifetime T 1 ~ 50 s T gate ~ 50 ns = 0.05 s → F exp(- T gate / T 1 ) = exp(- 0.05 s / 50 s) ~ 99.9 % R. Barends et al., App. Phys. Lett. 99, 113507 (2011)
69
fault tolerance – surface codes physical qubits → logical qubit = error rate 10 -14 1)nearest neighbor interactions 2)CNOT physical gates fast ~ 100 ns with F ≥ 99 % 3)readout fast ~ 100 ns with F ≥ 90 % 4)interface with classical electronics 5)overhead proof-of-concept → 3/5 physical qubits quantum memory → 10 10 = 10 2 physical qubits Shor → 10 3 to 10 4 physical qubits
70
fault tolerance – surface codes 2) readout R. Vijay et al., Nature (London) 490, 77 (2012) readout time r ~ 100 ns F > 90 %
71
fault tolerance – surface codes physical qubits → logical qubit = error rate 10 -14 1)nearest neighbor interactions 2)CNOT physical gates fast ~ 100 ns with F ≥ 99 % 3)readout fast ~ 100 ns with F ≥ 90 % 4)interface with classical electronics 5)overhead proof-of-concept → 3/5 physical qubits quantum memory → 10 10 = 10 2 physical qubits Shor → 10 3 to 10 4 physical qubits
72
surface code proof-of-concept → 3/5 physical qubits → 3-4 years quantum memory → 10 2 physical qubits → 8-9 years Shor to factor a 2000 bit number in 24 h with 1 nuclear power plant → 300 10 6 physical qubits oon the best classical super-cluster: many times the age of the universe and virtually infinite power perspective
73
resonator-qubit 2D lattice A,|g ⟩ unit cell B B Z R R R … … … … Q,| ⟩
74
A,|g ⟩ B … … … … higher isolation → OFF coupling B Q,| ⟩ resonator-qubit 2D lattice
75
B B Q,| ⟩ A,|g ⟩ R R R … … … higher isolation → OFF coupling encoding → multiple measurement resonator-qubit 2D lattice
76
Z … … … higher isolation → OFF coupling encoding → multiple measurement zero Q,| ⟩ leakage to third state resonator-qubit 2D lattice
77
see also D.P. DiVincenzo, Phys. Scr., T 137, 014020 (2009) A,|g ⟩ B B Z R R R … … … higher isolation → OFF coupling encoding → multiple measurement zero and/or store Q,| ⟩ resonator-qubit 2D lattice
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.