Presentation is loading. Please wait.

Presentation is loading. Please wait.

LECTURE DAY 2 Timo Laukkanen. What was important in Lecture 1 Process Integration/Heat Exchanger Network Synthesis (HENS) is an important step in process.

Similar presentations


Presentation on theme: "LECTURE DAY 2 Timo Laukkanen. What was important in Lecture 1 Process Integration/Heat Exchanger Network Synthesis (HENS) is an important step in process."— Presentation transcript:

1 LECTURE DAY 2 Timo Laukkanen

2 What was important in Lecture 1 Process Integration/Heat Exchanger Network Synthesis (HENS) is an important step in process design Energy saving is very often also economically feasible Energy saving in industry is a major contributor in CO2 savings in the next 40 years CC (Composite Curves) Course arrangements

3 What is important in Lecture 2 Problem Table Algorithm (PTA) Heat Cascade Grand Composite Curve (GCC) Pinch violations Stream grid Maximum Energy Recovery (MER) Network Targeting for minimum number of Units

4 Numerical Method(s) for Energy Targets Problem Table Algorithm, Heat Cascade, Grand Composite Curve

5 T supply (°C) T target (°C) m c p (kW/K) H14001201.0 H22501202.0 C11604001.5 C21002501.3 ∆T min = 50°C Step 1 (adjust temperatures) Hot streams: T * hot = T hot - ½∆T min Cold streams: T * cold = T cold + ½∆T min T* supply (°C) T* target (°C) m c p (kW/K) H1375951.0 H2225952.0 C11854251.5 C21252751.3

6 Step 2 (temperature intervalls) T* supply (°C) T* target (°C) m c p (kW/K) H1375951.0 H2225952.0 C11854251.5 C21252751.3 425 °C TI 1 ∆T=50°C 375 °C TI 2 ∆T=100°C 275 °C TI 3 ∆T=50°C 225 °C TI 4 ∆T=40°C 185 °C TI 5 ∆T=60°C 125 °C TI 6 ∆T=30°C 95 °C H1 H2 C1 C2

7 Step 3 (enthalpy balance) 425 °C TI 1 ∆T=50°C∆H 1 = 50 * (0.0 - 1.5) = -75 375 °C TI 2 ∆T=100°C∆H 2 = 100 * (1.0 – 1.5) = -50 275 °C TI 3 ∆T=50°C∆H 3 = 50 * (1.0 – 1.5 - 1.3) = -90 225 °C TI 4 ∆T=40°C∆H 4 = 40 * (1.0 + 2.0 – 1.5 – 1.3) = 8 185 °C TI 5 ∆T=60°C∆H 5 = 60 * (1.0 + 2.0 – 1.3) = 102 125 °C TI 6 ∆T=30°C∆H 6 = 30 * (1.0 + 2.0) = 90 95 °C H1 1.0 H2 2.0 C1 1.5 C2 1.3

8 -75 -125 -215 -207 -105 -15 Step 4 (cascade the heat flow) 425 °C TI 1 -75 375 °C TI 2 -50 275 °C TI 3 -90 225 °C TI 4 8 185 °C TI 5 102 125 °C TI 6 90 95 °C 215 140 90 0 8 110 200 Hot Utility Pinch Point Cold Utility

9 Summary Problem Table Algorithm Adjust (shift) the temperatures Find the temperature intervals Calculate the enthalpy balance for each interval – heat surplus (+) and deficit (-) Cascade the enthalpy – add large deficit at the top Make the heat cascade thermodynamically feasible

10 Grand Composite Curve 425 °C TI 1 375 °C TI 2 275 °C TI 3 225 °C TI 4 185 °C TI 5 125 °C TI 6 95 °C 215 140 90 0 8 110 200 50 100 150 200 Q (kW) T(°C)

11 Grand Composite Curve (GGC) Visualizes the surplus and deficit heat at different temperature intervals Provides an visual tool for integrating – Different utilities – Different processes – Heat pumps – Other thermodynamic cycles 50 100 150 200 Q (kW) T(°C) Other process Heat integration possibility between processes HP steam LP steam

12 3 Pinch Rules For Maximum Energy Recovery “Pinch Violations”

13 Heat Deficit Q T pinch temperature Q S, min Heat Surplus Q W, min Heat transfer through the Pinch Q + Q Q?

14 Heat Deficit Q T pinch temperature Q S, min Heat Surplus Q W, min Cooling above and heating below the Pinch Q + Q Q

15 Summary 3 Pinch Rules Never transfer heat through the pinch – Penalty: Increased both hot and cold utility Never cool (with external cooling) above the pinch – Penalty: Increased hot utility Never heat (with external heating) below the pinch – Penalty: Increased cold utility

16 Heat Exchanger Network Design Stream Grid, MER Network

17 T supply (°C) T target (°C) m c p (kW/K) H14001201.0 H22501202.0 C11604001.5 C21002501.3 ∆T min = 50°C, T pinch = 225°C Q h = 225 kW, Q c = 200 kW Stream Grid T pinch, cold = 200°C T pinch, hot = 250°C H1 C1 H2 C2 1.0 2.0 1.5 1.3

18 Q h = 225 kW, Q c = 200 kW Stream Matches T pinch, cold = 200°C T pinch, hot = 250°C H1 C1 H2 C2 1.0 2.0 1.5 1.3 400°C120°C 400°C160°C 250°C100°C Q H1 = 1.0 * (400 – 250) = 150kW Q C1 = 1.5 * (400 – 200) = 300 kW Q = 150 kW Q C2 = 1.3 * (250 – 200) = 65 kW Q = 65 kW

19 Q h = 225 kW, Q c = 200 kW Stream splitting T pinch, cold = 200°C T pinch, hot = 250°C H1 C1 H2 C2 1.0 2.0 1.5 1.3 120°C 160°C 100°C 1.0 0.5 1.3 0.7 Q = 40 kW Q H = 130kW Q C = 40kW Q H = 91kW Q C = 20kW Q = 20 kW Q H = 169kW Q C = 130kW Q = 130 kW Q = 90 kW Q = 110 kW

20 Summary Stream Grid and MER-Network Draw the Stream Grid – draw the pinch(es) – draw the streams above and below the pinch Match streams starting at the pinch – (m c p ) out >= (m c p ) in – Split streams if necessary Calculate the heat exchanger duty – Remember hot and cold streams have different pinch temperature!


Download ppt "LECTURE DAY 2 Timo Laukkanen. What was important in Lecture 1 Process Integration/Heat Exchanger Network Synthesis (HENS) is an important step in process."

Similar presentations


Ads by Google