Presentation is loading. Please wait.

Presentation is loading. Please wait.

1 Multivariate Normal Distribution 朱永军信息管理学院. 2 Generalized from univariate normal densityGeneralized from univariate normal density Base of many multivariate.

Similar presentations


Presentation on theme: "1 Multivariate Normal Distribution 朱永军信息管理学院. 2 Generalized from univariate normal densityGeneralized from univariate normal density Base of many multivariate."— Presentation transcript:

1 1 Multivariate Normal Distribution 朱永军信息管理学院

2 2 Generalized from univariate normal densityGeneralized from univariate normal density Base of many multivariate analysis techniquesBase of many multivariate analysis techniques Useful approximation to “true” population distributionUseful approximation to “true” population distribution Central limit distribution of many multivariate statisticsCentral limit distribution of many multivariate statistics Mathematical tractableMathematical tractable

3 3 Univariate Normal Distribution

4 4 Table 1, Appendix

5 5 Square of Distance (Mahalanobis distance)

6 6 p-dimensional Normal Density

7 7 Example 4.1 Bivariate Normal

8 8 Example 4.1 Squared Distance

9 9 Example 4.1 Density Function

10 10 Example 4.1 Bivariate Distribution  11 =  22,  12 = 0

11 11 Example 4.1 Bivariate Distribution  11 =  22,  12 = 0.75

12 12 Contours

13 13 Result 4.1

14 14 Example 4.2 Bivariate Contour

15 15 Example 4.2 Positive Correlation

16 16 Probability Related to Squared Distance

17 17

18 18 Result 4.2

19 19 Example 4.3 Marginal Distribution 边际分布

20 20 Result 4.3

21 21 Proof of Result 4.3: Part 1

22 22 Proof of Result 4.3: Part 2

23 23 Example 4.4 Linear Combinations

24 24 Result 4.4

25 25 Example 4.5 Subset Distribution

26 26 Result 4.5

27 27 Example 4.6 Independence

28 28 Result 4.6

29 29 Proof of Result 4.6

30 30

31 31 Example 4.7 Conditional Bivariate

32 32 Example 4.1 Density Function

33 33 Example 4.7

34 34 Result 4.7

35 35  2 Distribution

36 36  2 Distribution Curves

37 37 Table 3, Appendix

38 38 Proof of Result 4.7 (a)

39 39 Proof of Result 4.7 (b)

40 40 Result 4.8

41 41 Proof of Result 4.8

42 42 Example 4.8 Linear Combinations

43 43

44 44 Multivariate Normal Likelihood

45 45 Maximum-likelihood Estimation

46 46 Trace 迹 of a Matrix

47 47 Result 4.9

48 48 Proof of Result 4.9 (a)

49 49 Proof of Result 4.9 (b)

50 50 Likelihood Function

51 51 Result 4.10

52 52 Proof of Result 4.10

53 53 Result 4.11 Maximum Likelihood Estimators of  and 

54 54 Proof of Result 4.11

55 55 Invariance Property

56 56 Sufficient Statistics

57 57 Distribution of Sample Mean

58 58 Sampling Distribution of S

59 59 Wishart 维希特分布 Distribution

60 60 Univariate Central Limit Theorem

61 61 Result 4.12 Law of Large Numbers

62 62 Result 4.12 Multivariate Cases

63 63 Result 4.13 Central Limit Theorem

64 64 Limit Distribution of Statistical Distance

65 65 Evaluating Normality of Univariate Marginal Distributions

66 66

67 67 Q-Q Plot

68 68 Example 4.9

69 69

70 70 Sas prog data sheets; input distance @@; label distance='Hole Distance in cm'; datalines; 9.80 10.20 10.27 9.70 9.76 10.11 10.24 10.20 10.24 9.63 9.99 9.78 10.10 10.21 10.00 9.96 9.79 10.08 9.79 10.06 10.10 9.95 9.84 10.11 9.93 10.56 10.47 9.42 10.44 10.16 10.11 10.36 9.94 9.77 9.36 9.89 9.62 10.05 9.72 9.82 9.99 10.16 10.58 10.70 9.54 10.31 10.07 10.33 9.98 10.15 ; run;

71 Sas prog 续 symbol v=plus; legend2 FRAME CFRAME=ligr CBORDER=black POSITION=center; title 'Normal Quantile-Quantile Plot for Hole Distance'; proc capability data=sheets noprint; spec lsl=9.5 clsl=red usl=10.5 cusl=blue; qqplot distance / cframe = ligr legend = legend2; run; proc capability data=sasuser.finish noprint; qqplot x2 / cframe = ligr legend = legend2; run;

72 Sas prog 续 symbol v=plus; legend2 FRAME CFRAME=ligr CBORDER=black POSITION=center; title 'Normal Quantile-Quantile Plot for Hole Distance'; proc capability data=sheets noprint; spec lsl=9.5 clsl=red usl=10.5 cusl=blue; qqplot distance / cframe = ligr legend = legend2; run; proc capability data=sasuser.finish noprint; qqplot x2 / cframe = ligr legend = legend2; run;

73 Sas prog 另一模块 proc univariate data=Measures; qqplot Width / lognormal(sigma=2 theta=0 zeta=0); qqplot Width / lognormal(sigma=2 theta=0 slope=1); qqplot Width / weibull2(sigma=2 theta=0 c=.25); qqplot Width / weibull2(sigma=2 theta=0 slope=4); Run; data Failures; input Time @@; label Time = 'Time in Months'; datalines; 29.42 32.14 30.58 27.50 26.08 29.06 25.10 31.34 29.14 33.96 30.64 27.32 29.86 26.28 29.68 33.76 29.32 30.82 27.26 27.92 30.92 24.64 32.90 35.46 30.28 28.36 25.86 31.36 25.26 36.32 28.58 28.88 26.72 27.42 29.02 27.54 31.60 33.46 26.78 27.82 29.18 27.94 27.66 26.42 31.00 26.64 31.44 32.52 ; run;

74 Sas prog 续另一模块 symbol v=plus; title 'Three-Parameter Weibull Q-Q Plot for Failure Times'; proc univariate data=Failures noprint; qqplot Time / weibull(c=est theta=est sigma=est noprint) cframe = ligr square href=0.5 1 1.5 2 vref=25 27.5 30 32.5 35 lhref=4 lvref=4 chref=ywh cvref=ywh; run;

75 Q-Q Plot 75

76 76 Example 4.10 Radiation Data of Closed-Door Microwave Oven

77 77 Measurement of Straightness

78 78 Table 4.2 Q-Q Plot Correlation Coefficient Test

79 79 Example 4.11

80 80 Evaluating Bivariate Normality

81 81 Example 4.12

82 82

83 83 Chi-Square Plot

84 84 Example 4.13 Chi-Square Plot for Example 4.12

85 85

86 86 Chi-Square Plot for Computer Generated 4-variate Normal Data

87 87 Steps for Detecting Outliers Make a dot plot for each variableMake a dot plot for each variable Make a scatter plot for each pair of variablesMake a scatter plot for each pair of variables Calculate the standardized values. Examine them for large or small valuesCalculate the standardized values. Examine them for large or small values Calculated the squared statistical distance. Examine for unusually large values. In chi-square plot, these would be points farthest from the origin.Calculated the squared statistical distance. Examine for unusually large values. In chi-square plot, these would be points farthest from the origin.

88 88 Helpful Transformation to Near Normality Original Scale Transformed Scale Counts, y Proportions, Correlations, r

89 89 Box and Cox’s Univariate Transformations

90 90 Example 4.16 ( ) vs. Example 4.16 ( ) vs.

91 91 Example 4.16 Q-Q Plot

92 92 Transforming Multivariate Observations

93 93 More Elaborate Approach

94 94 Example 4.17 Original Q-Q Plot for Open-Door Data

95 95 Example 4.17 Q-Q Plot of Transformed Open-Door Data

96 96 Example 4.17 Contour Plot of for Both Radiation Data

97 97 Transform for Data Including Large Negative Values


Download ppt "1 Multivariate Normal Distribution 朱永军信息管理学院. 2 Generalized from univariate normal densityGeneralized from univariate normal density Base of many multivariate."

Similar presentations


Ads by Google