Download presentation
Presentation is loading. Please wait.
Published byJade Bishop Modified over 8 years ago
1
1 Multivariate Normal Distribution 朱永军信息管理学院
2
2 Generalized from univariate normal densityGeneralized from univariate normal density Base of many multivariate analysis techniquesBase of many multivariate analysis techniques Useful approximation to “true” population distributionUseful approximation to “true” population distribution Central limit distribution of many multivariate statisticsCentral limit distribution of many multivariate statistics Mathematical tractableMathematical tractable
3
3 Univariate Normal Distribution
4
4 Table 1, Appendix
5
5 Square of Distance (Mahalanobis distance)
6
6 p-dimensional Normal Density
7
7 Example 4.1 Bivariate Normal
8
8 Example 4.1 Squared Distance
9
9 Example 4.1 Density Function
10
10 Example 4.1 Bivariate Distribution 11 = 22, 12 = 0
11
11 Example 4.1 Bivariate Distribution 11 = 22, 12 = 0.75
12
12 Contours
13
13 Result 4.1
14
14 Example 4.2 Bivariate Contour
15
15 Example 4.2 Positive Correlation
16
16 Probability Related to Squared Distance
17
17
18
18 Result 4.2
19
19 Example 4.3 Marginal Distribution 边际分布
20
20 Result 4.3
21
21 Proof of Result 4.3: Part 1
22
22 Proof of Result 4.3: Part 2
23
23 Example 4.4 Linear Combinations
24
24 Result 4.4
25
25 Example 4.5 Subset Distribution
26
26 Result 4.5
27
27 Example 4.6 Independence
28
28 Result 4.6
29
29 Proof of Result 4.6
30
30
31
31 Example 4.7 Conditional Bivariate
32
32 Example 4.1 Density Function
33
33 Example 4.7
34
34 Result 4.7
35
35 2 Distribution
36
36 2 Distribution Curves
37
37 Table 3, Appendix
38
38 Proof of Result 4.7 (a)
39
39 Proof of Result 4.7 (b)
40
40 Result 4.8
41
41 Proof of Result 4.8
42
42 Example 4.8 Linear Combinations
43
43
44
44 Multivariate Normal Likelihood
45
45 Maximum-likelihood Estimation
46
46 Trace 迹 of a Matrix
47
47 Result 4.9
48
48 Proof of Result 4.9 (a)
49
49 Proof of Result 4.9 (b)
50
50 Likelihood Function
51
51 Result 4.10
52
52 Proof of Result 4.10
53
53 Result 4.11 Maximum Likelihood Estimators of and
54
54 Proof of Result 4.11
55
55 Invariance Property
56
56 Sufficient Statistics
57
57 Distribution of Sample Mean
58
58 Sampling Distribution of S
59
59 Wishart 维希特分布 Distribution
60
60 Univariate Central Limit Theorem
61
61 Result 4.12 Law of Large Numbers
62
62 Result 4.12 Multivariate Cases
63
63 Result 4.13 Central Limit Theorem
64
64 Limit Distribution of Statistical Distance
65
65 Evaluating Normality of Univariate Marginal Distributions
66
66
67
67 Q-Q Plot
68
68 Example 4.9
69
69
70
70 Sas prog data sheets; input distance @@; label distance='Hole Distance in cm'; datalines; 9.80 10.20 10.27 9.70 9.76 10.11 10.24 10.20 10.24 9.63 9.99 9.78 10.10 10.21 10.00 9.96 9.79 10.08 9.79 10.06 10.10 9.95 9.84 10.11 9.93 10.56 10.47 9.42 10.44 10.16 10.11 10.36 9.94 9.77 9.36 9.89 9.62 10.05 9.72 9.82 9.99 10.16 10.58 10.70 9.54 10.31 10.07 10.33 9.98 10.15 ; run;
71
Sas prog 续 symbol v=plus; legend2 FRAME CFRAME=ligr CBORDER=black POSITION=center; title 'Normal Quantile-Quantile Plot for Hole Distance'; proc capability data=sheets noprint; spec lsl=9.5 clsl=red usl=10.5 cusl=blue; qqplot distance / cframe = ligr legend = legend2; run; proc capability data=sasuser.finish noprint; qqplot x2 / cframe = ligr legend = legend2; run;
72
Sas prog 续 symbol v=plus; legend2 FRAME CFRAME=ligr CBORDER=black POSITION=center; title 'Normal Quantile-Quantile Plot for Hole Distance'; proc capability data=sheets noprint; spec lsl=9.5 clsl=red usl=10.5 cusl=blue; qqplot distance / cframe = ligr legend = legend2; run; proc capability data=sasuser.finish noprint; qqplot x2 / cframe = ligr legend = legend2; run;
73
Sas prog 另一模块 proc univariate data=Measures; qqplot Width / lognormal(sigma=2 theta=0 zeta=0); qqplot Width / lognormal(sigma=2 theta=0 slope=1); qqplot Width / weibull2(sigma=2 theta=0 c=.25); qqplot Width / weibull2(sigma=2 theta=0 slope=4); Run; data Failures; input Time @@; label Time = 'Time in Months'; datalines; 29.42 32.14 30.58 27.50 26.08 29.06 25.10 31.34 29.14 33.96 30.64 27.32 29.86 26.28 29.68 33.76 29.32 30.82 27.26 27.92 30.92 24.64 32.90 35.46 30.28 28.36 25.86 31.36 25.26 36.32 28.58 28.88 26.72 27.42 29.02 27.54 31.60 33.46 26.78 27.82 29.18 27.94 27.66 26.42 31.00 26.64 31.44 32.52 ; run;
74
Sas prog 续另一模块 symbol v=plus; title 'Three-Parameter Weibull Q-Q Plot for Failure Times'; proc univariate data=Failures noprint; qqplot Time / weibull(c=est theta=est sigma=est noprint) cframe = ligr square href=0.5 1 1.5 2 vref=25 27.5 30 32.5 35 lhref=4 lvref=4 chref=ywh cvref=ywh; run;
75
Q-Q Plot 75
76
76 Example 4.10 Radiation Data of Closed-Door Microwave Oven
77
77 Measurement of Straightness
78
78 Table 4.2 Q-Q Plot Correlation Coefficient Test
79
79 Example 4.11
80
80 Evaluating Bivariate Normality
81
81 Example 4.12
82
82
83
83 Chi-Square Plot
84
84 Example 4.13 Chi-Square Plot for Example 4.12
85
85
86
86 Chi-Square Plot for Computer Generated 4-variate Normal Data
87
87 Steps for Detecting Outliers Make a dot plot for each variableMake a dot plot for each variable Make a scatter plot for each pair of variablesMake a scatter plot for each pair of variables Calculate the standardized values. Examine them for large or small valuesCalculate the standardized values. Examine them for large or small values Calculated the squared statistical distance. Examine for unusually large values. In chi-square plot, these would be points farthest from the origin.Calculated the squared statistical distance. Examine for unusually large values. In chi-square plot, these would be points farthest from the origin.
88
88 Helpful Transformation to Near Normality Original Scale Transformed Scale Counts, y Proportions, Correlations, r
89
89 Box and Cox’s Univariate Transformations
90
90 Example 4.16 ( ) vs. Example 4.16 ( ) vs.
91
91 Example 4.16 Q-Q Plot
92
92 Transforming Multivariate Observations
93
93 More Elaborate Approach
94
94 Example 4.17 Original Q-Q Plot for Open-Door Data
95
95 Example 4.17 Q-Q Plot of Transformed Open-Door Data
96
96 Example 4.17 Contour Plot of for Both Radiation Data
97
97 Transform for Data Including Large Negative Values
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.