Download presentation
Presentation is loading. Please wait.
Published byBertha Wiggins Modified over 8 years ago
1
Prepared by :Ahmad AL-Nuirat Islam Zuhd Supervisor: D.Abdul Razzaq Touqan
2
Introduction Preliminary Design And Checks Static design Dynamic checks and design
4
Sky face hotel : A four story, Nablus city. story area = 2000 m 2. The first story is 5.5 m height (reception, wedding hall, security, offices, restaurant, prayers room and services). The upper three stories are 4m height for each, contain 26 living unit, and 18 sweat. The roof contains a swimming pool,coffee shop.
8
Site and geology: Hard lime stone, bearing capacity = 400kN/m2. Design codes: ACI -2008 (American Concrete Institute Code 2008 ). IBC 2006 (international building code 2006).
9
Materials : Structural materials: Non structural materials: columns and shear walls f’c = 30 MPa. beams and slabs f’c = 24 MPa. For footing f’c = 40 MPa. Steel yield strength fy = 420 MPa. weight per unit volume fo concrete = 25 kN/m 3 density =2.55 ton/m 3
10
Structural system : The structural systems were used one way solid slab and two way with drop beams in both directions.
11
Loading: Vertical loads: 1. Dead loads: it consists of weight of all permanent construction 2. super imposed dead load = 5.4kN/m 2 3. Live load :from table 4-1 in ASCE/SEI 7-05 code. For this building, LL = 2 kN/m 2 for slab 1,2,3, LL =4.8 kN/m 2 for slab roof 4, and LL=10 kN/m 2 for slab roof 5. Lateral load from water pressure.
12
Computer programs was used : SAP2000 (v14.2.4) program. o Loads combination: Wu= 1.4D.L Wu= 1.2D.L+ 1.6L.L Wu= 1.2D.L +1.0L.L ±1.0E Wu= 0.9D.L ±1.0E
14
Slabs Min thickness: Table 9.5(a) in ACI-Code318-11: The most critical span is 5 m length For one end cont. span: hmin = Ln /24 For both end cont. span: hmin = Ln /28 210 mm thickness for slabs1,2,3,roof4, and 250mm for slab roof5
15
Check slab for shear: Own weight of slab 1,2,3,roof4 =5.25 KN/m². Own weight of slab roof5 =6.25 KN/m². Wu for slab 1,2,3 = 15.98 KN/m² Wu slab roof 4 = 20.46 KN/m². Wu slab roof 5 = 29.98 KN/m². slab roof4 Vu =50.85 KN. Φv C =97.98 KN slab roof5 Vu =73.3 KN. Φv C =122.47 KN Vu< ØVc____________ OK.
16
beams depths: From table 9.5(a) in ACI-Code318-11:
20
Checks and SAP model Verification: Compatibility: The compatibility of the model was checked and it was OK
21
Checks and SAP model Verification: Equilibrium : Equilibrium in the vertical direction (due to gravity loads ) Thus, the errors between hand solution and SAP results are very small and less than 5%, so accept results. Load typeHand results (KN)SAP results (KN)Error % live load15729.80416264.1723.28 SID load20069.85620614.712.64 dead load42479.3842057.6651 Load typeHand results (KN)SAP results (KN)Error % live load11991.8411921.7360.5 SID load24943.6825461.9722.03 dead load43109.81645355.044.9 water load3000 0
22
Checks and SAP model Verification: Equilibrium : Equilibrium in lateral direction From hand calculation both x and Y force =0.
23
Checks and SAP model Verification: Stress-strain Relationship:
24
panel ID panel location M averagewl2/8error% s13321194749.94-6.25 42273163.563.94-0.7 60463392.593.69-1.2 s238153149.549.94-0.89 66222366.563.943.84 beam ID beam location M averagewl 2/ 8Error% beam 11617.758801569.52473.6252430.471.74 2002.0310642039.873084.953035.521.6 3003.1917772463.374510.284308.294.48 beam 2655.44393689.441065.441072.25-0.64 756.78502725.71243.241352.25-8.76
26
Slab design Column design Footing design Pool design Stair case
27
Slab Design: Check Deflection: The max deflection due to dead load was found at the middle of the panel between grid lines 14 and 16 that is 41.6mm.
28
Slab Design: Check Deflection: Δ dead = 4.386 mm. Δ Live = 4.178 mm. Δ long term = 17.128 mm. The allowable deflection = L /240 = 5000 /240 = 20.83 mm. So the slab deflection = 17.128 mm. < allowable long term def. =20.83mm OK.
29
Slab Design: check slab for shear : ØVc= 122.47 KN.,Vu slab roof4 = 78.65 KN/m. 122.47 ≥ 78.65 OK ØVc= 97.98 KN.,Vu slab roof4 = 56.47 KN/m. 122.47 ≥ 56.47 OK
30
Design for bending moment: -ve &+ve moment m11 for slabs roof5
31
reinforcement for slab roof5
32
- reinforcement for slab roof4 northern part
33
reinforcement for slab roof4 southern part
34
reinforcement for slabs 1,2,3 northern part
35
reinforcement for slabs 1,2,3 southern part
36
Design of columns: For un-braced column:- Kl/r≤ 22 ……........Short column. Kl/r≥ 22 ………….Long column
37
M min =Pu*e min e min =0.015+0.03c Moment M min = 51.78 1 KN.m Pu =1918 KN, Mc =62.14KN.m Use =0.01, fc =30 MPa Cover in column =0.04m, ɤ =0.8 Pu/bh =1.74Ksi, Mn/bh 2 =0.141Ksi. From interaction diagram the section is adequate to carry the load and moment.
40
Grouping name column ID Dimension(m) Column identification using grid formation Longitudinal reinforcement col0.4col0.4-10.4*0.4A-1,A-4-A-18,B-3,B-10,B-13,B-188Ø16 C-1,C-10,C-13,C-18,D-18Ø16 F-1,F-10,F-13,G-13,J-13,I-1,K-1, K-10,K-13 8Ø16 M-1,N-1,N-108Ø16 O-1,O-10,P-1,P-10,P-138Ø16 col0.4-20.4*0.4B-116Ø16 col0.5col0.5-10.5*0.5B-14,B-16,B-17,C-3,C-14,C-16,C-1712Ø18 F-3,G-15,J-15,K-15,P-1812Ø18 col0.5-20.5*0.5N-18,O-13,O-18,N-1314Ø18 col0.6col0.6-10.6*0.6 B-6,B-7,B-9,F-9,F-16,G-14,I-3,1-7, I-9,K-3 16Ø18 K-6,K-7,K-9,K-18,F-14,F-18,N-3,N-6, N-7,N-9 16Ø18 col0.6-20.6*0.6B-4,N-4,F-1720Ø18 col0.6-30.6*0.6P-3,P-4,P-6,P-7,P-922Ø20 col0.8col0.8-10.8*0.8F-,F-7,I-6,K-1714Ø25 col0.8-20.8*0.8K-14,K-16,P-14,P-16,P-1722Ø32
41
footing: Bearing capacity of the soil=400KN/m 2. Design of footing for column B-3: Column dimensions = 0.4x0.4 m Compressive strength of concrete (fc) = 40MPa. service load =1640 KN Area= Area of footing =4.1m 2 The root of area =2.03m L= 2.5 m.
42
For design: Area of footing =6.25m 2 o Check wide beam shear ØVc = 0.75fc^0.5 L*d/6 ØVc= 830.09 KN Vu = q u [ L/2– (c/2+d) ] Vu= 483.34 KN Vu < ØVc. Wide beam shear OK.
43
o Check punching shear: Qu=306.88KN /m 2 ØVcp=0.75 fc^0.5 L*d/3 ØVcp=2178.17 KN Vup=Pu –(c+d) 2 q u Vup =1803 KN Vup< ØVcp Punching is OK.
44
Flexural design: Mu =422.92 KN.m = 0.00257 As= *L*d As = 2699 mm 2 So use As 13 ɸ 18 As shrinkage= 2250mm 2
45
grouping name footing IDdimensionColumn identification using grid formationreinforcement f1f1-11.5*1.5A-1,C-1,D-1,F-1,G-13,J-13,K-1,M-1,N-1,P-1 8 ɸ 16 f2f2-12*2 A-3,A-4,A-5,A-8,A-9,A-16,A-17, A-18,B-1,C-18,J-15,O-1,P-18 10 ɸ 16 f2-22*2I-1,B-18 10 ɸ 18 f3f3-12.5*2.5A-14,B-3,B-7,B-9,B-14,B-16,B-17,C-3,C-14, 13 ɸ 18 C-16,C-17,F-14,F-18,K-3,N-3,N-9, N-18,O-18,P-3,P-4,P-6,P-7,P-9 f3-22.5*2.5K-18 13 ɸ 20 f4f4-13*3B-4,B-6,F-16,F-17,I-3,N-4,N-6,N-7 15 ɸ 20 f4-23*3F-3,K-14 15 ɸ 25 f5f5-13.3*3.3P-14,P-16,P-17 17 ɸ 20 f6f6-13.8*3.8K-16,K-1719 ɸ 20
46
Design of footing F7 carrying O-10 and O-13 : Column ID service load KN(Ps) Ultimate load KN (Pu) O-108381059 O-1313591751 C.S 1.25m M.S 1.25m C.S 1.5m M.S 1.5m moment/C.S or/M.S 385295370225 0.00470.00360.00370.0023 As2468189023311449 As. Bars13 ɸ 1613 ɸ 1415 ɸ 1415 ɸ 12
47
Check wide beam shear was satisfied Check punching shear was satisfied footing f7dimensions Reinforcement in long direction. Reinforcement in short direction. O-10,O-13 3*2.5 26 ɸ 1630 ɸ 14 A-10,A-13 3*2.5 26 ɸ 1630 ɸ 14 C-10,C-13 3*2.5 26 ɸ 1630 ɸ 14 N-10,N-13 3*2.5 26 ɸ 1630 ɸ 14 B-10,B-13 3*2.5 26 ɸ 1630 ɸ 14 P-10,P-13 3*2.5 26 ɸ 1630 ɸ 14 F-10,F-13 3*2.5 26 ɸ 1630 ɸ 14 K-10,K-13 3*2.526 ɸ 1630 ɸ 14
50
Design of combined footing f9: h= 60cm and d = 52cm. L = 4m. B=3 m.
51
Check for wide beam shear: ØVc= 1233.29 KN/m ØVc > Vu OK. Check for punching shear: Column k-14: Pu=3666.83 KN ØVcp =4341 KN ØVcp> Pu OK.
52
Longitudinal 20 ɸ 20, 20 ɸ 16 TraversUse 26 ɸ 20
53
Pool design : Pool Wall: Vu, V 13 = 13KN/m V 23 =50KN/m, both less than 164.3 KN/m Ok. Flexural design:
56
Pool slab: Check wide beam shear: ØVc=239.6 KN /m Design for flexure:
58
Stair case 2 sections Dimensions
60
Check for shear: reading shear values from 1D model for both sections
61
Flexure design : moment values from the 1D model as shown for both section, respectively
62
Model number MuρAsReinforcement/m Model 1 87.50.00555811688 Ø14 40.570.0024945244 Ø 14 87.50.00555811688 Ø14 Model 243.290.0026665604 Ø 14 101.230.00649713659 Ø14 Final reinforcement for stair case
63
Staircase detail for section 1
64
Staircase detail for section 2
67
Modeperiod(sec)MMPR 1transition in y1.770.8186 2transition in x1.580.8318 3Rz1.350.0322 Modeperiod(sec)MMPR 1transition in x1.670.9084 2transition in y1.560.8787 3Rz1.520.4199 1.For the southern part :
68
Earthquake Force: Methods for determining Earthquake Force : 1.Equivalent static method. 2. Time history method 3. Response spectrum analysis
69
SD1T(s)CsM(ton)V(KN) Northern part x-direction 0.133331.590.019736489.71330.57 Southern part x-direction 0.133331.660.020086748.941329.44
70
MethodValue(KN) Manual(equivalent static) southern -x1329.44 response-x southern1028.07 elcentro-x southern1338.89 Manual(equivalent static) northern -x1330.57 response-x northern2092.2 elcentro-x northern2160.03 Earthquake forces for the structure by the 3 methods :
71
Dynamic Design : consider time history (elcentro earthquake) for the dynamic design. Load combinations are: COMB1 = 1.2D.L + 1.6 LL. COMB2 = 1.4 D.L. COMB3 = 1.2D.L + L.L + elcentro-x. COMB4 = 1.2D.L + L.L + elcentro -y. COMB5 = 0.9D.L + elcentro -x. COMB6 = 0.9D.L + elcentro -y.
72
Final design : Slab design Beams design Column design Footing design Pool design Shear wall
73
Slab design we found that the values of shear and moment on slabs due to static or gravity load combination are greater than earthquake combination so: static design governs for slab.
74
Beams design Final beam design taken from SAP as follows
76
Column design Grouping namecolumn IDDimension(m) Column identification using grid formation Longitudinal reinforcement col0.4col0.4-10.4*0.4A-1-A-17,B-10,B-13,B-188Ø16 C-1,C-10,C-13,C-18,D-18Ø16 F-1,F-13,G1-3,J-13,I-1,K-1,K-138Ø16 M-1,N-1,N-108Ø16 O-1,P-1,P-108Ø16 col0.4-20.4*0.4B-1,F-10,K-10,O-1016Ø16 col0.5col0.5-10.5*0.5B-3,B-14,B-16,B-17,C-3,C-14,C-16,C-1712Ø18 F-3,G-15,J-15,K-1512Ø18 col0.5-20.5*0.5N-18,O-13,O-18,N-1314Ø18 col0.6col0.6-10.6*0.6B-6,B-7,B-9,F-9,F-6,G-14,I-3,1-7,I-9,K-316Ø18 K-6,K-7,K-9,K-18,F-14,F-18,N-3,N-6,N-7, N-9 16Ø18 col0.6-20.6*0.6B-4,N-4,F-1720Ø18 col0.6-30.6*0.6P-3,P-4,P-6,P-7,P-922Ø20 col0.8col0.8-10.8*0.8F-6,F-7,I-6,K-1714Ø25 col0.8-20.8*0.8K-14,K-16,P-14,P-16,P-1722Ø32
77
Footing design Static design govern in most cases Some of them was covered by dynamic combinations, and despite that they were within the capacity of previous static design
78
Pool design: When comparing results, the gravity combinations controlled for analysis and design for both pool slab and pool walls.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.