Presentation is loading. Please wait.

Presentation is loading. Please wait.

Prepared by :Ahmad AL-Nuirat Islam Zuhd Supervisor: D.Abdul Razzaq Touqan.

Similar presentations


Presentation on theme: "Prepared by :Ahmad AL-Nuirat Islam Zuhd Supervisor: D.Abdul Razzaq Touqan."— Presentation transcript:

1 Prepared by :Ahmad AL-Nuirat Islam Zuhd Supervisor: D.Abdul Razzaq Touqan

2  Introduction  Preliminary Design And Checks  Static design  Dynamic checks and design

3

4 Sky face hotel :  A four story, Nablus city.  story area = 2000 m 2.  The first story is 5.5 m height (reception, wedding hall, security, offices, restaurant, prayers room and services).  The upper three stories are 4m height for each, contain 26 living unit, and 18 sweat.  The roof contains a swimming pool,coffee shop.

5

6

7

8 Site and geology: Hard lime stone, bearing capacity = 400kN/m2. Design codes:  ACI -2008 (American Concrete Institute Code 2008 ).  IBC 2006 (international building code 2006).

9 Materials :  Structural materials: Non structural materials: columns and shear walls f’c = 30 MPa. beams and slabs f’c = 24 MPa. For footing f’c = 40 MPa. Steel yield strength fy = 420 MPa. weight per unit volume fo concrete = 25 kN/m 3 density =2.55 ton/m 3

10 Structural system : The structural systems were used one way solid slab and two way with drop beams in both directions.

11 Loading: Vertical loads: 1. Dead loads: it consists of weight of all permanent construction 2. super imposed dead load = 5.4kN/m 2 3. Live load :from table 4-1 in ASCE/SEI 7-05 code. For this building, LL = 2 kN/m 2 for slab 1,2,3, LL =4.8 kN/m 2 for slab roof 4, and LL=10 kN/m 2 for slab roof 5. Lateral load from water pressure.

12  Computer programs was used : SAP2000 (v14.2.4) program. o Loads combination: Wu= 1.4D.L Wu= 1.2D.L+ 1.6L.L Wu= 1.2D.L +1.0L.L ±1.0E Wu= 0.9D.L ±1.0E

13

14  Slabs Min thickness: Table 9.5(a) in ACI-Code318-11: The most critical span is 5 m length For one end cont. span: hmin = Ln /24 For both end cont. span: hmin = Ln /28 210 mm thickness for slabs1,2,3,roof4, and 250mm for slab roof5

15 Check slab for shear: Own weight of slab 1,2,3,roof4 =5.25 KN/m². Own weight of slab roof5 =6.25 KN/m². Wu for slab 1,2,3 = 15.98 KN/m² Wu slab roof 4 = 20.46 KN/m². Wu slab roof 5 = 29.98 KN/m². slab roof4 Vu =50.85 KN. Φv C =97.98 KN slab roof5 Vu =73.3 KN. Φv C =122.47 KN Vu< ØVc____________ OK.

16  beams depths: From table 9.5(a) in ACI-Code318-11:

17

18

19

20 Checks and SAP model Verification:  Compatibility: The compatibility of the model was checked and it was OK

21 Checks and SAP model Verification:  Equilibrium : Equilibrium in the vertical direction (due to gravity loads ) Thus, the errors between hand solution and SAP results are very small and less than 5%, so accept results. Load typeHand results (KN)SAP results (KN)Error % live load15729.80416264.1723.28 SID load20069.85620614.712.64 dead load42479.3842057.6651 Load typeHand results (KN)SAP results (KN)Error % live load11991.8411921.7360.5 SID load24943.6825461.9722.03 dead load43109.81645355.044.9 water load3000 0

22 Checks and SAP model Verification:  Equilibrium : Equilibrium in lateral direction From hand calculation both x and Y force =0.

23 Checks and SAP model Verification:  Stress-strain Relationship:

24 panel ID panel location M averagewl2/8error% s13321194749.94-6.25 42273163.563.94-0.7 60463392.593.69-1.2 s238153149.549.94-0.89 66222366.563.943.84 beam ID beam location M averagewl 2/ 8Error% beam 11617.758801569.52473.6252430.471.74 2002.0310642039.873084.953035.521.6 3003.1917772463.374510.284308.294.48 beam 2655.44393689.441065.441072.25-0.64 756.78502725.71243.241352.25-8.76

25

26  Slab design  Column design  Footing design  Pool design  Stair case

27  Slab Design:  Check Deflection: The max deflection due to dead load was found at the middle of the panel between grid lines 14 and 16 that is 41.6mm.

28  Slab Design:  Check Deflection: Δ dead = 4.386 mm. Δ Live = 4.178 mm. Δ long term = 17.128 mm. The allowable deflection = L /240 = 5000 /240 = 20.83 mm. So the slab deflection = 17.128 mm. < allowable long term def. =20.83mm OK.

29  Slab Design:  check slab for shear : ØVc= 122.47 KN.,Vu slab roof4 = 78.65 KN/m. 122.47 ≥ 78.65 OK ØVc= 97.98 KN.,Vu slab roof4 = 56.47 KN/m. 122.47 ≥ 56.47 OK

30  Design for bending moment: -ve &+ve moment m11 for slabs roof5

31 reinforcement for slab roof5

32 - reinforcement for slab roof4 northern part

33 reinforcement for slab roof4 southern part

34 reinforcement for slabs 1,2,3 northern part

35 reinforcement for slabs 1,2,3 southern part

36  Design of columns: For un-braced column:- Kl/r≤ 22 ……........Short column. Kl/r≥ 22 ………….Long column

37 M min =Pu*e min e min =0.015+0.03c Moment M min = 51.78 1 KN.m Pu =1918 KN, Mc =62.14KN.m Use =0.01, fc =30 MPa Cover in column =0.04m, ɤ =0.8 Pu/bh =1.74Ksi, Mn/bh 2 =0.141Ksi. From interaction diagram the section is adequate to carry the load and moment.

38

39

40 Grouping name column ID Dimension(m) Column identification using grid formation Longitudinal reinforcement col0.4col0.4-10.4*0.4A-1,A-4-A-18,B-3,B-10,B-13,B-188Ø16 C-1,C-10,C-13,C-18,D-18Ø16 F-1,F-10,F-13,G-13,J-13,I-1,K-1, K-10,K-13 8Ø16 M-1,N-1,N-108Ø16 O-1,O-10,P-1,P-10,P-138Ø16 col0.4-20.4*0.4B-116Ø16 col0.5col0.5-10.5*0.5B-14,B-16,B-17,C-3,C-14,C-16,C-1712Ø18 F-3,G-15,J-15,K-15,P-1812Ø18 col0.5-20.5*0.5N-18,O-13,O-18,N-1314Ø18 col0.6col0.6-10.6*0.6 B-6,B-7,B-9,F-9,F-16,G-14,I-3,1-7, I-9,K-3 16Ø18 K-6,K-7,K-9,K-18,F-14,F-18,N-3,N-6, N-7,N-9 16Ø18 col0.6-20.6*0.6B-4,N-4,F-1720Ø18 col0.6-30.6*0.6P-3,P-4,P-6,P-7,P-922Ø20 col0.8col0.8-10.8*0.8F-,F-7,I-6,K-1714Ø25 col0.8-20.8*0.8K-14,K-16,P-14,P-16,P-1722Ø32

41  footing: Bearing capacity of the soil=400KN/m 2.  Design of footing for column B-3: Column dimensions = 0.4x0.4 m Compressive strength of concrete (fc) = 40MPa. service load =1640 KN Area= Area of footing =4.1m 2 The root of area =2.03m L= 2.5 m.

42  For design: Area of footing =6.25m 2 o Check wide beam shear ØVc = 0.75fc^0.5 L*d/6 ØVc= 830.09 KN Vu = q u [ L/2– (c/2+d) ] Vu= 483.34 KN Vu < ØVc. Wide beam shear OK.

43 o Check punching shear: Qu=306.88KN /m 2 ØVcp=0.75 fc^0.5 L*d/3 ØVcp=2178.17 KN Vup=Pu –(c+d) 2 q u Vup =1803 KN Vup< ØVcp Punching is OK.

44  Flexural design: Mu =422.92 KN.m = 0.00257 As= *L*d As = 2699 mm 2 So use As 13 ɸ 18 As shrinkage= 2250mm 2

45 grouping name footing IDdimensionColumn identification using grid formationreinforcement f1f1-11.5*1.5A-1,C-1,D-1,F-1,G-13,J-13,K-1,M-1,N-1,P-1 8 ɸ 16 f2f2-12*2 A-3,A-4,A-5,A-8,A-9,A-16,A-17, A-18,B-1,C-18,J-15,O-1,P-18 10 ɸ 16 f2-22*2I-1,B-18 10 ɸ 18 f3f3-12.5*2.5A-14,B-3,B-7,B-9,B-14,B-16,B-17,C-3,C-14, 13 ɸ 18 C-16,C-17,F-14,F-18,K-3,N-3,N-9, N-18,O-18,P-3,P-4,P-6,P-7,P-9 f3-22.5*2.5K-18 13 ɸ 20 f4f4-13*3B-4,B-6,F-16,F-17,I-3,N-4,N-6,N-7 15 ɸ 20 f4-23*3F-3,K-14 15 ɸ 25 f5f5-13.3*3.3P-14,P-16,P-17 17 ɸ 20 f6f6-13.8*3.8K-16,K-1719 ɸ 20

46  Design of footing F7 carrying O-10 and O-13 : Column ID service load KN(Ps) Ultimate load KN (Pu) O-108381059 O-1313591751 C.S 1.25m M.S 1.25m C.S 1.5m M.S 1.5m moment/C.S or/M.S 385295370225 0.00470.00360.00370.0023 As2468189023311449 As. Bars13 ɸ 1613 ɸ 1415 ɸ 1415 ɸ 12

47  Check wide beam shear was satisfied  Check punching shear was satisfied footing f7dimensions Reinforcement in long direction. Reinforcement in short direction. O-10,O-13 3*2.5 26 ɸ 1630 ɸ 14 A-10,A-13 3*2.5 26 ɸ 1630 ɸ 14 C-10,C-13 3*2.5 26 ɸ 1630 ɸ 14 N-10,N-13 3*2.5 26 ɸ 1630 ɸ 14 B-10,B-13 3*2.5 26 ɸ 1630 ɸ 14 P-10,P-13 3*2.5 26 ɸ 1630 ɸ 14 F-10,F-13 3*2.5 26 ɸ 1630 ɸ 14 K-10,K-13 3*2.526 ɸ 1630 ɸ 14

48

49

50 Design of combined footing f9: h= 60cm and d = 52cm. L = 4m. B=3 m.

51 Check for wide beam shear: ØVc= 1233.29 KN/m ØVc > Vu OK. Check for punching shear: Column k-14: Pu=3666.83 KN ØVcp =4341 KN ØVcp> Pu OK.

52 Longitudinal 20 ɸ 20, 20 ɸ 16 TraversUse 26 ɸ 20

53  Pool design : Pool Wall: Vu, V 13 = 13KN/m V 23 =50KN/m, both less than 164.3 KN/m Ok. Flexural design:

54

55

56 Pool slab:  Check wide beam shear: ØVc=239.6 KN /m Design for flexure:

57

58  Stair case 2 sections Dimensions

59

60 Check for shear: reading shear values from 1D model for both sections

61 Flexure design : moment values from the 1D model as shown for both section, respectively

62 Model number MuρAsReinforcement/m Model 1 87.50.00555811688 Ø14 40.570.0024945244 Ø 14 87.50.00555811688 Ø14 Model 243.290.0026665604 Ø 14 101.230.00649713659 Ø14 Final reinforcement for stair case

63 Staircase detail for section 1

64 Staircase detail for section 2

65

66

67 Modeperiod(sec)MMPR 1transition in y1.770.8186 2transition in x1.580.8318 3Rz1.350.0322 Modeperiod(sec)MMPR 1transition in x1.670.9084 2transition in y1.560.8787 3Rz1.520.4199 1.For the southern part :

68 Earthquake Force: Methods for determining Earthquake Force : 1.Equivalent static method. 2. Time history method 3. Response spectrum analysis

69 SD1T(s)CsM(ton)V(KN) Northern part x-direction 0.133331.590.019736489.71330.57 Southern part x-direction 0.133331.660.020086748.941329.44

70 MethodValue(KN) Manual(equivalent static) southern -x1329.44 response-x southern1028.07 elcentro-x southern1338.89 Manual(equivalent static) northern -x1330.57 response-x northern2092.2 elcentro-x northern2160.03 Earthquake forces for the structure by the 3 methods :

71 Dynamic Design : consider time history (elcentro earthquake) for the dynamic design. Load combinations are: COMB1 = 1.2D.L + 1.6 LL. COMB2 = 1.4 D.L. COMB3 = 1.2D.L + L.L + elcentro-x. COMB4 = 1.2D.L + L.L + elcentro -y. COMB5 = 0.9D.L + elcentro -x. COMB6 = 0.9D.L + elcentro -y.

72 Final design :  Slab design  Beams design  Column design  Footing design  Pool design  Shear wall

73  Slab design we found that the values of shear and moment on slabs due to static or gravity load combination are greater than earthquake combination so: static design governs for slab.

74  Beams design Final beam design taken from SAP as follows

75

76  Column design Grouping namecolumn IDDimension(m) Column identification using grid formation Longitudinal reinforcement col0.4col0.4-10.4*0.4A-1-A-17,B-10,B-13,B-188Ø16 C-1,C-10,C-13,C-18,D-18Ø16 F-1,F-13,G1-3,J-13,I-1,K-1,K-138Ø16 M-1,N-1,N-108Ø16 O-1,P-1,P-108Ø16 col0.4-20.4*0.4B-1,F-10,K-10,O-1016Ø16 col0.5col0.5-10.5*0.5B-3,B-14,B-16,B-17,C-3,C-14,C-16,C-1712Ø18 F-3,G-15,J-15,K-1512Ø18 col0.5-20.5*0.5N-18,O-13,O-18,N-1314Ø18 col0.6col0.6-10.6*0.6B-6,B-7,B-9,F-9,F-6,G-14,I-3,1-7,I-9,K-316Ø18 K-6,K-7,K-9,K-18,F-14,F-18,N-3,N-6,N-7, N-9 16Ø18 col0.6-20.6*0.6B-4,N-4,F-1720Ø18 col0.6-30.6*0.6P-3,P-4,P-6,P-7,P-922Ø20 col0.8col0.8-10.8*0.8F-6,F-7,I-6,K-1714Ø25 col0.8-20.8*0.8K-14,K-16,P-14,P-16,P-1722Ø32

77  Footing design Static design govern in most cases Some of them was covered by dynamic combinations, and despite that they were within the capacity of previous static design

78  Pool design: When comparing results, the gravity combinations controlled for analysis and design for both pool slab and pool walls.

79

80


Download ppt "Prepared by :Ahmad AL-Nuirat Islam Zuhd Supervisor: D.Abdul Razzaq Touqan."

Similar presentations


Ads by Google