Download presentation
Presentation is loading. Please wait.
Published byEric Goodman Modified over 8 years ago
1
THERMO-MECHANICAL DESIGN | PAGE 1 CEA Saclay 2015
2
THERMO-MECHANICAL DESIGN Design overview Thermo-mechanical calculations Hypothesis Entrance slits Beam-stopper Mechanical interfaces EMU – Actuator interface Actuator – Diagnostic chamber interface | PAGE 2 CEA Saclay 2015
3
DESIGN OVERVIEW | PAGE 3 CEA Saclay 2015
4
DESIGN OVERVIEW | PAGE 4 CEA Saclay 2015 4 Beam stopper Entrance slits Deviation plates Exit slits Faraday cup
5
DESIGN OVERVIEW Nominal positions Lower slice of the beam -50mm Upper slice of the beam +50mm « Safety position » +150mm | PAGE 5 CEA Saclay 2015 User defined IDRequirementDesign LEBT_PBI_EMU-005160mm200mm
6
THERMO-MECHANICAL CALCULATIONS | PAGE 6 CEA Saclay 2015
7
THERMO-MECHANICAL CALCULATIONS Hypothesis First hypotheses : gaussian power deposition Beam characteristics (Réf : « L5_LEBT_EMU » 2015/30/01) Nodal power deposition Steady-state analysis Material physical datas : Advanced Energy Technology Group http://aries.ucsd.edu/LIB/PROPS/PANOS/cu.html | PAGE 7 CEA Saclay 2015 DescriptionValueUnit Beam energy75kV Beam intensity at peak 100mA Repetition rate14Hz Duty cycle8% MINIMAL beam size (in sigma) 1.5mm MAXIMAL beam size diameter 80mm Average power absorbed 625W
8
THERMO-MECHANICAL CALCULATIONS Entrance slits Two entrance slits, with two identical cross-section Exchangeable parts Pure copper-made | PAGE 8 CEA Saclay 2015 0.2rad User defined IDRequirementDesign LEBT_PBI_EMU-004+/-100mrad+/-200mrad LEBT_PBI_EMU-004 MIN:60mm MAX:100mm
9
THERMO-MECHANICAL CALCULATIONS Configuration 1 Beam hits a slit on the surface normal to the beam direction, only one slit is exposed. | PAGE 9 CEA Saclay 2015 Configuration 2 EMU slits centered on the beam, slits are equally exposed. Entrance slit Beam-stopper
10
THERMO-MECHANICAL CALCULATIONS Convective boundary condition Heat exchange coefficient : h=10919W/m².K Volumetric water flow rate : 4L/min Inlet water temperature : 22°C Working pressure : 6 Bars Linear velocity : 2.4m/s | PAGE 10 CEA Saclay 2015
11
THERMO-MECHANICAL CALCULATIONS Configuration 1 Power dissipated : 619W Through convective boundary condition (neglecting radiation) | PAGE 11 CEA Saclay 2015
12
THERMO-MECHANICAL CALCULATIONS Temperature field : Max : 307°C Temperature gradient in the slit : | PAGE 12 CEA Saclay 2015
13
THERMO-MECHANICAL CALCULATIONS Temperature on convective boundary condition : Max : 92°C Saturation properties for water (pressure increment) | PAGE 13 CEA Saclay 2015
14
THERMO-MECHANICAL CALCULATIONS Von Mises stresses : Max : 81MPa No brazing Choice of the material | PAGE 14 CEA Saclay 2015 ! !
15
THERMO-MECHANICAL CALCULATIONS Maximum entrance slit displacements : On Z : max : -10µm On X : max : -7µm | PAGE 15 CEA Saclay 2015 10µm 7µm Conclusions for Configuration 1: High levels of temperature : structural integrity of the slits cannot be guaranteed Thermal expansion of copper : loss of approximately 10% of the beam after entrance slits
16
THERMO-MECHANICAL CALCULATIONS Configuration 2 Power dissipated : 304W Through convective boundary Condition (neglecting radiation) | PAGE 16 CEA Saclay 2015
17
THERMO-MECHANICAL CALCULATIONS Temperature field : Max : 114°C Temperature gradient in the slit : | PAGE 17 CEA Saclay 2015
18
THERMO-MECHANICAL CALCULATIONS Temperature on convective boundary condition : Max : 70°C Saturation properties for water (pressure increment) | PAGE 18 CEA Saclay 2015
19
THERMO-MECHANICAL CALCULATIONS Von Mises stresses : Max : 36MPa Choice of the material | PAGE 19 CEA Saclay 2015
20
THERMO-MECHANICAL CALCULATIONS Maximum entrance slit displacements : On Z : max : -12µm On X : max : 11µm | PAGE 20 CEA Saclay 2015 12µm 11µm Conclusions for Configuration 2: Entrance slits are both exposed to the same amount of power Thermal expansion of copper : loss of approximately 12% x 2 = 24% of the beam after the entrance slits
21
THERMO-MECHANICAL CALCULATIONS Influence of standard deviation on : Temperature fields | PAGE 21 CEA Saclay 2015
22
THERMO-MECHANICAL CALCULATIONS Influence of standard deviation on : Von Mises stresses fields | PAGE 22 CEA Saclay 2015
23
THERMO-MECHANICAL CALCULATIONS Influence of standard deviation on : Displacements | PAGE 23 CEA Saclay 2015
24
THERMO-MECHANICAL CALCULATIONS Influence of standard deviation on : Measure | PAGE 24 CEA Saclay 2015
25
THERMO-MECHANICAL CALCULATIONS Beam-stopper Separately cooled : 8L/min No contact with the entrance slits | PAGE 25 CEA Saclay 2015
26
THERMO-MECHANICAL CALCULATIONS Beam-stopper Maximum temperature | PAGE 26 CEA Saclay 2015 1.5 mm3 mm Max : 233°CMax : 150°C
27
THERMO-MECHANICAL CALCULATIONS Beam-stopper Maximum temperature (water) | PAGE 27 CEA Saclay 2015 1.5 mm3 mm Max : 60°CMax : 57°C
28
Beam-stopper Maximum stresses THERMO-MECHANICAL CALCULATIONS | PAGE 28 CEA Saclay 2015 Max : 182MPaMax : 113MPa 1.5 mm3 mm
29
THERMO-MECHANICAL CALCULATIONS Conclusion : For safety and reliability measurement matters : INCREASE STANDARD DEVIATION OF THE BEAM Steady-state simulations Guaranty mechanical integrity and stability of the parts Guaranty a minimum level of reliability of measures | PAGE 29 CEA Saclay 2015 DescriptionValueUnit MINIMAL beam size (in sigma) 3mm MAXIMAL beam size diameter 80mm
30
MECHANICAL INTERFACES | PAGE 30 CEA Saclay 2015
31
MECHANICAL INTERFACES Admissible defects from emittance measurement point of view | PAGE 31 CEA Saclay 2015 BEAM 90°
32
MECHANICAL INTERFACES Actuator – Diagnostic chamber interface Global angular positionning guaranteed : +/-0.25° | PAGE 32 CEA Saclay 2015 BEAM User defined IDRequirementDesign LEBT_PBI_EMU-0070.5°+/-0.25°
33
MECHANICAL INTERFACES EMU – Actuator interface CF100 flange Connectors and pick-ups : 1x BNC 2x SHV-10 2x thermocouples 1-pair 1x SHV-5 Hydraulic supply : 4x 12-10mm diameter tubes Two-levels interface to optimize actuator dimensions Length of the rod allowing both 370mm from the CF250 200mm stroke | PAGE 33 CEA Saclay 2015
34
MECHANICAL INTERFACES EMU – Diagnostic chamber interface Machining and positionning tolerances Global defect : approx. 0,1mm Global defect : approx. 0,3mm Global defect : approx. 0,2mm | PAGE 34 CEA Saclay 2015
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.