Download presentation
Presentation is loading. Please wait.
Published byAmie Nicholson Modified over 8 years ago
1
1 Комитет Полномочных Представителей 26 ноября 2010 г., г.Дубна ИДЕНТИФИКАЦИЯ И ИЗУЧЕНИЕ ХИМИЧЕСКИХ СВОЙСТВ НОВЫХ ЭЛЕМЕНТОВ ПЕРИОДИЧЕСКОЙ ТАБЛИЦЫ Д.И. МЕНДЕЛЕЕВА ИДЕНТИФИКАЦИЯ И ИЗУЧЕНИЕ ХИМИЧЕСКИХ СВОЙСТВ НОВЫХ ЭЛЕМЕНТОВ ПЕРИОДИЧЕСКОЙ ТАБЛИЦЫ Д.И. МЕНДЕЛЕЕВА С.Н. Дмитриев С.Н. Дмитриев
2
2
3
3
4
Трансурановые элементы 93 ≤ Z ≤ 100: Np, Pu, Am, Cm, Bk, Cf, Es, Fm Md→118 – реакции с тяжелыми ионами
5
5 IVVVI HfTaW 104105106 Газовая химия (gas-phase chemistry) Газовая химия (gas-phase chemistry) (Летучесть галогенидов, оксигалогенидов) Термохроматография (of-line) Термохроматография (of-line) Изотермическая хроматография Изотермическая хроматография (OLGA: On-Line Gas chromatography ) (OLGA: On-Line Gas chromatography ) 1966 г. – И. Звара и др. (ЛЯР ОИЯИ, Дубна) HfCl 4 TaBr 5 WO 2 Cl 2 HfCl 4 TaBr 5 WO 2 Cl 2 104Cl 4 105Br 5 106O 2 Cl 2 HfCl 4 TaBr 5 WO 2 Cl 2 HfCl 4 TaBr 5 WO 2 Cl 2 104Cl 4 105Br 5 106O 2 Cl 2 ХИМИЯ ТРАНСАКТИНОИДОВ (Z>103) (Z>103)
6
6 Aqueous-phase Chemistry 1980 г. – Хьюлет и др.; D.Hoffman и др. 261 Rf (78 сек) - экстракция RfClx аминами - сорбция катионитами - сорбция катионитами Rf Hf Zr - экстракция ТВР, TIOA ARCA (Automated Rapid Chemistry Apparatus) 263 Db – 27 сек жидкостная хроматография Db Ta Nb SISAK (Short-lived Isotopes Studied by the AKufve technique) многоступенчатая жидкостная экстракция на высокоскоростных микроцентрифугах ( 257 Rf – 4 сек) 104 ХИМИЯ ТРАНСАКТИНОИДОВ
7
7 5 40 Zr 41 Nb 42 Mo 43 Tc 44 Ru 45 Rh 46 Pd 47 Ag 48 Cd 6 72 Hf 73 Ta 74 W 75 Re 76 Os 77 Ir 78 Pt 79 Au 80 Hg 7 104 Rf 105 Db 106 Sg 107 Bh 108 Hs 109 Mt 110 Ds 111 Rg112 RfCl 4 DbCl 5 SgO 2 Cl 2 BhO 3 ClHsO 4 RfBr 4 DbBr 5 261 Rf( ) 262,263 Db( ) 266 Sg( ,SF) 267 Bh( ) 269 Hs( ) 268 Mt( ) 271 Ds( ) 272 Rg( ) 277 112( ) 78 s 30 s 21 s15 s9 s0,1 s0,2 s2,5 ms 460 s ХИМИЯ ТРАНСАКТИНОИДОВ
8
Карта нуклидов
9
9 ЦИКЛОТРОН У400
10
~20 s Of-line chemical separation of 268 Db Z=115 Nb / Ta / Db - fraction Dmitriev S N et al., Mendeleev Commun.15 (2005) 1 Schumann D et al., Radiochim. Acta 93 (2005) 727 Stoyer N J et al., Proc.9th Int. Conf. NN Collisions,Brazil, 28 Aug.–1 Sep. 2006. Oganessian Yu Ts et al., Phys. Rev. C 69 (2004) 021601 Transactinides
11
15 events 48 Ca + 243 Am N Sample (data) t irr hr Beam Dose E bot +E top + 1 n (t,c) t detect hr t measurement hr 1 (12.06) 20 2,510 17 120+126+2 1 n (5;64) 20429 2 (13.06) 22 3,710 17 ̶ +86+1 1 n (57) 74186 3 (14.06) 22 3,410 17 131+124+1 1 n (3) 116+122+2 1 n (8;16) 1572385 4 (15.06) 22 2,910 17 104+120+1 1 n (2) 97+125+1 1 n (151) 100+128+1 1 n (89) 222951358 5 (17.06) 38 6,710 17 117+118+2 1 n (6,98) 108+107+3 1 n (4,31,43) 110+104+0 1 n -- +76+2 1 n (6,41) 691568861 6 (18.06) 23 3,910 17 120+114+2 1 n (2,2) 39933 7 (19.06) 22 3,610 17 --957 8 (21.06) 45 7,410 17 119+110+2 1 n (5;33) 118+105+2 1 n (72,165) 65+58+3 1 n (12,19,29) 593174910 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3,4. 10 18
12
12 Spontaneous fission half-life of 268 Db (N=163) T 1/2 = 32 h 15 events 252 Cf 268 Db Q F ~ 280 MeV
13
13 Conclusion Conclusion The properties of the isotope 268 Db produced in the decay chain of element 115 using the gas-filled recoil separator agree by all measured parameters with the data of the present chemical experiment on the determination of its atomic number. The decay chain of element 115 synthesized in the reaction 243 Am+ 48 Ca consists of 5 sequential -transitions resulting in the formation of the long-lived nucleus of element 105 leading to spontaneous fission. A hypothesis of the possible -decay of the Db nucleus has been totally rejected by the conditions of chemical separation of the reaction products in this experiment. Thus, the data from the present experiment are the independent evidence for the synthesis of element 115 as well as element 113 in the reaction 243 Am+ 48 Ca
14
Карта нуклидов
15
Chemistry of the112 and 114 Elements 80 Hg [Xe]4f 14 5d 10 6s 2 112 [Rn]5f 14 6d 10 7s 2 82 Pb [Xe]4f 14 5d 10 6s 2 6p 2 114 [Rn]5f 14 6d 10 7s 2 7p 2
16
contraction and stabilization of s and p 1/2 orbitals expansion and destabilization of d and f orbitals SO splitting of p, d, f orbitals j = l s j = l s R e (7s) = 20% scale as ~ Z 2 Relativistic effects
17
17 GAS PHASE CHEMISTRY WITH ELEMENTS 112 AND 114 Are elements 112 and 114 volatile metals? How do relativistic effects influence the chemistry of E112 and of E114?
18
18 How to experimentally determine a metallic character of a volatile element at a single atom level? → Determine interaction energy (adsorption enthalpy) with noble metals (e.g. Au) → If metallic: strong interaction (adsorption enthalpy) if non-metallic (noble gas like): weak interaction
19
Reaction: 242 Pu (48 Ca,3n) 287 114 [0.5s ]→α→ 283 112 [3.6s ] Compound Hg(Au) and 112(Au)
20
Observed in Chemistry: 283 112 4 s 9.54 MeV 287 114 0.51 s 10.02 MeV 279 Ds 0.18 s SF(>90%) 205 MeV Reported at FLNR: Oganessian et al. 2004 291 116 6.3 ms 10.7 MeV The Observation Dubna2006/2007 Eichler, R. et al. Nature (2007) Experiments with element 112 -24°C -5°C -26°C -44°C on gold -126°C on ice 242 Pu ( 48 Ca, 3n) 287 114 5 weeks: 6*10 18 48 Ca
21
Results Simulation Experiment(-5°C) (-26°C) (-26°C) (-44°C) (-127°C) (-24°C) gas flow Experiments with element 112
22
22 Тенденции изменения летучести элементов II б группы Периодической таблицы Д.И.Менделеева ∆H субл., кДж/моль ∆H субл. T кип., К T кип.
23
48 Ca + 242 Pu 48 Ca + 242 Pu 283 112 10.9 s 9.53 MeV 287 114 10.04 MeV 279 Ds 0.24 s SF 283 112 4.0 s 9.54 MeV 287 114 0.51 s 10.02 MeV 279 Ds 0.18 s SF Физический эксперимент Химический эксперимент Т адс = -88 °C
24
48 Ca + 244 Pu 48 Ca + 244 Pu 288 114 9.95 MeV 284 112 :109 ms SF 284 112 101 ms SF 288 114 0.8 s 9.95 MeV Т адс = -84 °C Физический эксперимент Химический эксперимент
25
gold ice Preliminary Results Dubna 2007/2008 Experiments with element 114 T dep : -88°C T dep : -4°C -84°C T dep : -93°C
26
26 Result from the chemistry experiment with element 114 Result from the chemistry experiment with element 114 → Element 114 exhibits a very weak interaction with Au - pointing to a physisorptive interaction (similar to a noble gas). → A quantitative description of this behaviour is lacking so far.
27
27
29
29 Synthesis of a new element with atomic number Z=117 Yu. Ts. Oganessian, 1) F. Sh. Abdullin, 1) P. D. Bailey, 2) D. E. Benker, 2) M. E. Bennett, 3) S N. Dmitriev, 1) J. G. Ezold, 2) J. H. Hamilton, 4) R. A. Henderson, 5) M. G. Itkis, 1) Yu. V. Lobanov, 1) A. N. Mezentsev, 1) K. J. Moody, 5) S. L. Nelson, 5) A.N. Polyakov, 1) C. E. Porter, 2) A. V. Ramayya, 4) F. D. Riley, 2) J. B. Roberto, 2) M. A. Ryabinin, 6) K. P. Rykaczewski, 2) R. N. Sagaidak, 1) D. A. Shaughnessy, 5) I.V. Shirokovsky, 1) M. A. Stoyer, 5) V. G. Subbotin, 1) R. Sudowe, 3) A. M. Sukhov, 1) Yu. S. Tsyganov, 1) V. K. Utyonkov, 1) A. A. Voinov, 1) G. K. Vostokin, 1) and P. A. Wilk 5) 1 Joint Institute for Nuclear Research, RU-141980 Dubna, RF 2 Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA 3 University of Nevada Las Vegas, Las Vegas, NV 89154, USA 4 Vanderbilt University, Nashville, TN 37235, USA 5 Lawrence Livemore National Laboratory, Livermore, CA 94551, USA 6 Research Institute of Atomic Reactors, RU-433510 Dimitrovgrad, RF (Dated: April 1, 2010) The discovery of a new chemical element with atomic number Z=117 is reported. The isotopes 293 117 and 294 117 were produced in fusion reactions between 48 Ca and 249 Bk. Decay chains involving eleven new nuclei were identified by means of the Dubna Gas Filled Recoil Separator. The measured decay properties show a strong rise of stability for heavier isotopes with Z≥111, validating the concept of the long sought island of enhanced stability for super-heavy nuclei
30
30 Target ( 249 Bk ; 0,5 mg/cm 2 ) SiO 2 - Ta 800°C (4 ) (4 ) He/Ar (70/30) CHEMISTRY OF THE 113 ELEMENT Au - 113 16 pairs 2.5m 1 L/min
31
31 Capillary length from target chamber to detector system is 2.5 m
32
32 16 pairs of gold covered detectors
33
33 48 Ca + 249 Bk Target 249 Bk (0.5 mg∙cm -2 ) nat Nd (30 μg∙cm -2 ) 48 Ca E mid. target = 252 MeV I ~ 9 eμA Irradiation: - 18.04.2010 – 31.05.2010; target I - 3.5 10 18 ; target II - 5.6 10 18 9.1∙10 18
34
34 Alpha and SF spectra
35
DGFRS 04 May 2010 10:05:4616 May 2010 02:29:54 Bk-target I Bk-target II 115 290 α2α2α2α2 113 28 6 8.89 MeV 64.90 s Mt 278 α4α4α4α4 Rg 282 α3α3α3α3 9.52 MeV 6.49 s Bh 274 α5α5α5α5 SF 101.0 + 89.1 MeV 79.25 h α6α6α6α6 8.77 MeV 13.59 min Db 270 249 Bk + 48 Ca 3n 9.62 MeV 117 294 α1α1α1α1 Bot. 8 115 290 9.95(40) MeV 10.23 MeV α2α2α2α2 113 286 9.00(10) MeV 9.43 MeV Mt 278 α4α4α4α4 Rg 282 α3α3α3α3 9.55(19) MeV 9.14 MeV Bh 274 α5α5α5α5 SF TKE = 219(5) MeV 33.4 h α6α6α6α6 8.80(10) MeV 8.43 MeV Db 270 9.63(10) MeV 9.56 MeV 117 294 10.81(10) MeV 11.00 MeV α1α1α1α1 1.3 min 7.4 min 11.0 s 13 s 0.74 s 8.1 s 28.3 s 16 s 0.023 s 1.0 s 112 ms 45 ms 117 297 E* = 35 MeV 1 event 115 290 α2α2α2α2 113 286 9.01 MeV 1.85min Mt 278 α4α4α4α4 Rg 282 α3α3α3α3 Bh 274 α5α5α5α5 SF 98.6 + 88.5 MeV 64.61 h α6α6α6α6 8.64 MeV <1.42 min Db 270 249 Bk + 48 Ca 3n117 294 α1α1α1α1 Bot. 4 Top 4 02.10.2016 108 session of JINR SC 35 preliminary
36
36 Hg-185 DISTRIBUTION
37
37 DGFRS Chemistry of the Element 113 115 288 113 284 9.75 MeV 3.6 s Mt 276 Rg 280 9.71 MeV 0.72 s Bh 272 SF TKE = 205(5) MeV 16 h 9.02 MeV 9.8 s Db 268 243 Am + 48 Ca 3n 10.00 MeV 0.48 s α2α2α2α2 α4α4α4α4 α3α3α3α3 α5α5α5α5 α1α1α1α1 10.46 MeV 87 ms 115 289289289289 10.31(9) MeV 10.48 MeV α2α2α2α2 113 285 α3α3α3α3 SF TKE = 218(5) MeV 38 s Rg 281 9.74(8) MeV 9.48(11) MeV 9.96 MeV 117 293 11.03(8) MeV 11.26 MeV α1α1α1α1 7.9 s 1.2 s 0.32 s 0.22 s 21 ms 10 ms 117 297 115 290 9.95(40) MeV 10.23 MeV α2α2α2α2 113 286 9.00(10) MeV 9.43 MeV Mt 278 α4α4α4α4 Rg 282 α3α3α3α3 9.55(19) MeV 9.14 MeV Bh 274 α5α5α5α5 SF TKE = 219(5) MeV 33.4 h α6α6α6α6 8.80(10) MeV 8.43 MeV Db 270 9.63(10) MeV 9.56 MeV 117 294 10.81(10) MeV 11.00 MeV α1α1α1α1 1.3 min 7.4 min 11.0 s 13 s 0.74 s 8.1 s 28.3 s 16 s 0.023 s 1.0 s 112 ms 45 ms 117 297 249 Bk + 48 Ca
38
Mass-spectrometer MASHA at the beam line of the cyclotron U-400M STATUS of the MASS-SPECTROMETER
39
FIRST EXPERIMENTS Mass identification of 112 и 114 elements synthesized at the reactions Mass identification of 112 и 114 elements synthesized at the reactions 242 Pu( 48 Ca,3n) 287 114(0.5 s) –> 283 112(4 s) Mass identification of 113 elements synthesized at the reaction Mass identification of 113 elements synthesized at the reaction 243 Am( 48 Ca,3n) 288 115 (0.1 s) → 284 113 (0.5 s) FIRST EXPERIMENTS Mass identification of 112 и 114 elements synthesized at the reactions Mass identification of 112 и 114 elements synthesized at the reactions 242 Pu( 48 Ca,3n) 287 114(0.5 s) –> 283 112(4 s) Mass identification of 113 elements synthesized at the reaction Mass identification of 113 elements synthesized at the reaction 243 Am( 48 Ca,3n) 288 115 (0.1 s) → 284 113 (0.5 s)
40
Preliminary Results Dubna 2008 Preliminary Results Dubna 2008 244 Pu ( 48 Ca, 3-4n) 288-289 114 Experiments with element 114 DGFRS COLD D Q1 Q2 10°C -160°C 400 g/cm 2 244 Pu t trans ~1.4 s Gas flow: Ar 2.1 l/min Recoil ranges tested with: 206 Rn, 185 Hg, 254 No Reliable design: 3 m Mylar, 1.5 cm Ar (1 bar)
41
Preliminary Results Dubna 2007/2008 Factor ~2-3 loss in overall efficiency: thin targets (2-3) transmission separator (3) higher beam doses (1.5) shorter transport time (2) No preseparation DGFRS preseparation
42
Chemistry behind the gas-filled separator
43
NEW EXPERIMENTAL HALL
44
44
45
Карта нуклидов
46
SEARCH of SUPERHEAVY ELEMENTS in NATURE Z=114 N=184 T 1/2 10 9 y 110-115 (eka Pt – eka Bi) Theoretical prediction of chemical properties Search of SHE in Nature Theoretical prediction of chemical properties Search of SHE in Nature Geological samples (high concentration of possible homologues) of possible homologues) Meteorites (Allende, Efremovka) Thermal Waters (hot brines, rift zone) Neutron multiplicaties Solid-State Detectors Big Proportional Counters 3 He-filled counters 3 He-filled counters Liquid scintillators Liquid scintillators Spontaneous fission fragments T 1/2 10 9 10 -13 – 10 -14 g/g
47
150 160 170180190140 15 20 10 -5 -10 118 112 114 110 108 - распад Возраст Земли 15 20 5 1 s 0 116 118 112 114 110 108 Число нейтронов L o g T ( с е к у н д ы ) Поиски СТЭ в природе Теория и эксперимент 10 8 y 10 5 y 1 y1 y Поиск СТЭ в космических лучах Cold fusion Act,+ 48 Ca
48
48 1 SF – события в год (T 1/2 =10 9 y) 1 SF – события в год (T 1/2 =10 9 y) соответствующий: 108/Os = 5.10 -15 г/г 108/Os = 5.10 -15 г/г и 108/Os = 5.10 -19 г/г 108/Os = 5.10 -19 г/г при T 1/2 ≤10 5 y при T 1/2 ≤10 5 y Xe – 140 г – 1 SF в месяц Fréjus peak Modane Вход в тоннель Франция Италия ПОИСК СТЭ
49
БЛАГОДАРЮ ЗА ВНИМАНИЕ!
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.