Presentation is loading. Please wait.

Presentation is loading. Please wait.

Ultra High Energy Cosmic Rays -- observational results -- M.Teshima Max-Planck-Institut f ü r Physik, M ü nchen Erice Summer School July. 2004.

Similar presentations


Presentation on theme: "Ultra High Energy Cosmic Rays -- observational results -- M.Teshima Max-Planck-Institut f ü r Physik, M ü nchen Erice Summer School July. 2004."— Presentation transcript:

1 Ultra High Energy Cosmic Rays -- observational results -- M.Teshima Max-Planck-Institut f ü r Physik, M ü nchen Erice Summer School July. 2004

2 Victor Hess 1912 Discovery of Cosmic Rays

3 John Linsley at Volcano Ranch (~1960) First discovery of super-GZK events

4 Cosmic Ray Energy Spectrum P γ3K Δ N π GZK mechanism AGASA Energy Spectrum Super GZK part. ~1/km 2 century

5 Background Radiations in the universe Pair creation GZK Cosmic Rays and Neutrino

6 Candidates for EHE C.R. accelerator PulsarSNR A.G.N. GRB Radio Galaxy Lobe

7 Synchrotron radiation GZK limit Hidden HILLAS PLOT II Ann. Rev. Astron. Astrophys. 1984, 22; p425-444

8 Cosmic Ray Propagation in our Galaxy Deflection angle ~ 1 degree at 10 20 eV Astronomy by hadronic particles?

9 Cosmic Ray Propagation in Galactic Disk and Inter Gal.

10 Exposure in ICRC2003

11 Air Shower Phenomena

12 AGASA Akeno Giant Air Shower Array 111 Electron Det. 27 Muon Det. 0 4km

13 HiRes Experiment Air Fluorescence detector

14 HiRes Experiment Air Fluorescence technique Measure Shower Development in the atmosphere Essentially Carolimetric measurement

15 Detector Calibration in AGASA experiment Detector Gain by muons in each run Cable delay (optic fiber cable) Gain as a function of time (11years data) Accuracy of 100ps by measuring the round trip time in each run Detector Position Survey from Airplane Δ X, Δ Y= 0.1m, Δ Z= 0.3m Linearity as a function of time (11years data)

16 Detector Simulation ( GEANT) Detector Housing (Fe 0.4mm) Detector Box (Fe 1.6mm) Scintillator (50mm) Earth (Backscattering) vertical θ = 60deg Detector Response Energy spectra of shower particles

17 Energy Determination Local density at 600m Good energy estimator by M.Hillas E=2.13x10 20 eV, E >= 1.6x10 20 eV

18 Third Highest event 97/03/30 150EeV 40 detecters were hit

19 The Highest Energy Event (~2.46 x10 20 eV) on 10 May 2001

20 Attenuation curve S(600) vs N ch 10 18 eV Proton Atmospheric depth

21 S600 Attenuation curve 0-45° 0-60° Atmospheric depth 20.0 19.5 19.0 18.5 18.0

22 The Conversion from S600 to Energy Muon/Neutrino Ele. Mag

23 S600 Intrinsic fluctuation for proton and iron Proton Iron

24 Major Systematics in AGASA astro-ph/0209422 Detector Detector Absolute gain± 0.7% Detector Linearity± 7% Detector response(box, housing)± 5% Energy Estimator S(600) Interaction model, P/Fe, Height±15% Air shower phenomenology Lateral distribution function± 7% S(600) attenuation± 5% Shower front structure ± 5% Delayed particle(neutron) ± 5% Total ± 18%

25 Energy Resolution 30% 25% mainly due to measurement errors (particle density measurement and core location determination) not due to shower fluctuation

26 Energy Spectrum by AGASA (θ<45) 11 obs. / 1.8 exp. 4.2σ 5.1 x 10 16 m 2 s sr

27 The Energy spectrum by AGASA Red: well inside the array (Cut the event near the boundary of array)

28 Akeno 1km 2 and AGASA

29 HiRes NSF events 200-300EeV

30

31 HiRes I, II mono spectrum

32 AGASA vs HiRes (astro-ph)

33 Recent spectra (AGASA vs. HiRes@Tsukuba ICRC) ~2.5 sigma discrepancy between AGASA & HiRes Energy scale difference by 25% vs. HiRes-stereo vs. HiRes-I vs. HiRes-II

34 World Energy Spectrum by M.Nagano 2002

35 Stecker 2003

36 by Douglas Bergman 20% energy variation AGASA vs HiRes

37 AGASA HiRes GZK-Hypothesis Extended spectrum Super-GZK ~2.4 σ ~4.2σ ~ 0 σ ~2.3 σ Statistics

38 40% uncertainty Impact parameter Air Fluorescence yield Measurement 1. Bunner 2. Kakimoto et al 3. Nagano et al Rayleigh Scattering ∝λ‐4∝λ‐4

39 Possible Systematics in HiRes Most of them are energy dependent Air Fluorescence yield Total yield is known with 10~20% accuracy Yields of individual lines are not known well Rayleigh Scattering effect ( ∝ 1/λ 4 ) Light transmission in air Mie Scattering Horizontal attenuation, Scale Height, Wind velocity, Temperature  single model represents whole data Horizontal 12km (1999)  25km (2001) Cherenkov light subtraction Bias by Narrow FOV in elevation angle Errors in Mono analysis Aperture estimation (Narrow F.O.V.) Chemical composition / Interaction dependent

40 Arrival Direction Distribution >4x10 19 eV zenith angle <50deg. Isotropic in large scale  Extra-Galactic But, Clusters in small scale ( Δθ< 2.5deg) 1triplet and 6 doublets (2.0 doublets are expected from random) One doublet  triplet(>3.9x10 19 eV) and a new doublet(<2.6deg)

41 Space Angle Distribution of Arbitrary two events >4x10 19 eV

42 Arrival Direction Distribution >10 19 eV

43 Space Angle Distribution Log E>19.6Log E>19.4 Log E>19.2Log E>19.0

44 Energy spectrum of Cluster events ∝ E -1.8+-0.3 Cluster Component

45 Density of sources by Kachelriess and Semikos 2004

46 2D-Correlation Map in (Δ l II, Δ b II ) Log E >19.0eV, 3. 4σLog E >19.2eV, 3. 0σ Log E >19.4eV, 2.0σLog E >19.6eV, 4.4σ Δ l II Δ b II

47 Cosmic Ray propagation in Galactic Magnetic Field By Stanev Δ b II Δ l II Aperture

48 Correlation with BL Lacs by Gorbnov et al. 2004

49 Full sky map of deflection angles By K.Dolag, D.Grasso, V.Springel, and I.Tkachev

50 Expected Auto correlation Yoshiguchi et al. 2004 Number density of sources ~10 -5 Mpc -3

51 Shower maximum X max FeP Atmospheric depth Number of shower particles

52 Shower Maximum Gaisser 2000

53 ρ μ (1000) distribution by AGASA 2002

54 Akeno 1km 2 (A1): Hayashida et al. ’95 Haverah Park (HP): Ave et al. ’03 Volcano Ranch (VR): Dova et al. (ICRC ‘03) HiRes (HiRes): Archbold et al. (ICRC ‘03) A1: PRELIMINARY 10 17.5 eV – 10 19 eV (Akeno 1km 2 array) Gradual lightening Above 10 19 eV (AGASA) Fe frac.: <40% (@90% CL) Chemical composition study by muons (p+Fe composition assumption; AIRES+QGSJET) PRELIMINARY

55 Limits on gamma-ray fraction Gamma-ray fraction upper limits (@90%CL) 34% (>10 19 eV) (  /p<0.45) 56% (>10 19.5 eV) (  /p<1.27) to observed events Topological defects (Sigl et al. ‘01) (M x =10 16 [eV]; flux normalised@10 20 eV ) Z-burst model(Sigl et al. ‘01) (Flux normalised@10 20 eV) SHDM-model (Berezinski et al. ‘98) (Mx=10 14 [eV]; flux normalised@10 19 eV ) Assuming 2-comp. (p+gamma-ray) primaries

56 Fly ’ s Eye highest energy event Halzen and Hooper 2002

57 HE and UHE Neutrino flux D.Tress and A.Anchordoqui 2004

58 Summary Super GZK particles exist AGASA  HiRes statistically consistent Origin of UHECR (Possible scenario) Decay of Heavy Relics in our Halo (WIMPZILLA) Z-burst by EHE neutrino  almost dead Violation of Special Relativity AGNs, BL-Lacs, GRBs Super GZK particles; no evidence for gamma rays May be difficult for top-down scenarios Evidence for point sources of UHECR AGASA  HiRes statistically consistent Clusters  nice chance to solve the origin of UHECRs Auger/EUSO – energy spectrum in each point source


Download ppt "Ultra High Energy Cosmic Rays -- observational results -- M.Teshima Max-Planck-Institut f ü r Physik, M ü nchen Erice Summer School July. 2004."

Similar presentations


Ads by Google