Download presentation
Presentation is loading. Please wait.
Published byMadison Douglas Modified over 8 years ago
1
Effect of SNPs: 1R9O ~ WT with bound flurbiprophen; 1OG5 with mutations K206E, I215V, C216Y, S220P, P221A, I223L, and I224L
2
R108 flurbiprophen heme iron WT CYP 2C9 bound to flurbiprophen
3
R108 heme iron S-warfarin Mutant CYP 2C9 complexed to S-warfarin
4
CYP1A2 allele nomenclature AlleleProteinNucleotide changes, Gene * Gene *Position 5347 should have a T and not a C to be considered *1A. Trivial name EffectEnzyme activityReferences In vivoIn vitro CYP1A2*1ACYP1A2.1NoneWild- type Normal Ikeya et al, 1989 Quattrochi and Tukey, 1989 CYP1A2*1BCYP1A2.15347T>C Nakajima et al, 1994 Welfare et al, 1999 CYP1A2*1CCYP1A2.1-3860G>A Decreased Nakajima et al, 1999 CYP1A2*1DCYP1A2.1-2467delT Japanese patent number 05719026 Chida et al, 1999 Chida et al, 1999 CYP1A2*1ECYP1A2.1-739T>G Japanese patent number 05719026 Chida et al, 1999 Chida et al, 1999 CYP1A2*1FCYP1A2.1-163C>A Higher inducibility Japanese patent number 05719026 Sachse et al, 1999 Chida et al, 1999 Han et al., 2002 Sachse et al, 1999 Chida et al, 1999 Han et al., 2002 http://www.imm.ki.se/CYPalleles/
5
SNPs matching: CYP1A2-03 Surrounding Sequence (GC Content=52%) CCTCAGTGTCACTGGGTAGGGGGAACTCCTGGTCCCTTGGGTAT ATGGAAGG TATCAGCAGAAAGCCAGCACTGGCAGGGACTCTTTGGTACAATA CCCAGCAT GCATGCTGTGSCAGGGGCTGACAAGGGTGCTGTCCTTGGCTTCC CCATTTTG GAGTGGTCACTTGCCTCTACTCCAGCCCCAGAAGTGGAAACTGA GATGATGT GTGGAGGAGAGASCCAGCGTTCATGTTGGGAATCTTGAGGCTCC TTTCCAGC TCTCAGATTCTGTGATGCTCAAAGGRTGAGCTCTGTGGGC(A/C )CMGGACG CAYGGTAGATGGAGCTTAGTCTTTCTGGTATCCAGCTGGGAGCC ARGCACAG AACACGCATCAGTGTTTATCAAATGACTGAGGAAATGAATGART GAATGTCT CCATCTCAACCCTCAGCCTGGTCCCTCCTKTTTTCCCTGCAGTT GGTACAGA TGGCATTGTCCCAGTCTGTTCCCTTCTCGGCCACAGAGCTTYTC CTGGCCTS TGCCATCTTSTGCCTGGTATTCTGGGTGCTCAAGGGTTTGAGGC CTCGGGTC CCCAAAGGCCTGAAAAGTCCACCARAGCCATGGS RA/CMYR KYS R To link to the SNP in the Genewindow genome browser, click on the red SNP. To view one of the other SNPs in this sequence, click on its IUPAC code. Some SNPs in this sequence are not currently in the database.IUPAC code dbSNP ID: rs762551 SNP500Cancer ID: CYP1A2- 03 Gene: CYP1A2 SNP Region: IVS1-154C>A Note: aka CYP1A2*1F CYP1A2IVS1-154C>A dbSNP NCBI map Ensembl mapdbSNP NCBI map Ensembl map Entrez GeneEntrez Gene
6
1. Epoxidation of double bonds. 2. C and N hydroxylation: C-H C-OH or N-H N-OH 3. Oxidative dealkylation: C-X-CH 3 C-X-CH 2 -OH CXH + CH 2 O; X= O, N, S C-X-CH 2 -NH 2 C-X-CH 2 -SH 4. Oxidative deamination: R-CH 2 -NH 2 R-CH(OH)NH 2 R-CH=O + NH 3 5. N, S oxidation: R 3 N R 3 N O ; R 2 S O Five reaction types of cytochrome P450
7
Oxidative dealkylation: C-hydroxylation followed by non-enzymatic hydrolysis of the gem-substituted adduct. Oxidative deamination: C-hydroxylation followed by non-enzymatic hydrolysis of the gem-substituted adduct. C-X-CH 3 C-X-CH 2 C-X-H + CH 2 =O X=O, N, S H-O X = O, hemiacetal X = N, gem amino hydrin X = S, thiohemiacetal
9
Arene oxide phenol rearrangement
10
Stereochemistry of hydration by epoxide hydrolase H2OH2O
11
BP diolepoxide stereo isomers (+)-anti: 7R,8S,9S,10R-BPDE
13
Adducts of anti-BPDE with exocyclic amino groups of nucleobases Heavy lines show the aromatic π-system conjugated with, and stabilizing the incipient positive charge resulting from attack at epoxide ring. This situation favors addition adjacent to aromatic ring.
14
3’-OH
16
Oxidized angular ring Distal end of pyrene system
17
adduct of (-)-trans-anti-BPDE with N 6 -dAdo: opposite dThyd from N-Ras fragment Looking down helix axis Looking perpendicular to helix axis 5 face of dAdo
18
cis adduct of (+)-anti-BPDE at N 6 of dAdo 5 face of dAdo
20
(–)-trans-anti-5-methylchrysene:dGuo adduct at the hindered bay region 5' 3'
21
(+)-trans-anti-benzo[g]chrysene:dAdo Inset: benzo[g]chrysene skeleton
22
R,S-trans-anti-benzo[c]phenanthrene:dGuo SR
23
classical intercalation 5-insertion S-trans-anti-B[c]Ph 1(S) 5…C[G*]C… normal duplex classical intercalation 3-insertion R-trans-anti-B[c]Ph 1(R) 5…C[G*]C… normal duplex
24
BAY REGION THEORY O transition state for opening of bay region epoxide heavy lines indicate the aromatic aromatic system Nu If a PAH has a bay region and shows genotoxic activity, the ultimate active metabolite will be the bay region diolepoxide.
25
Aflatoxin B 1 activation human CYP3A4
26
Reactions of AFB 1 -dGuo adduct depurination hydrolysis
27
AFB 1 -Fapy dGuo adduct N7 N9
28
AFB 1 -Fapy dGuo adduct DNA helix in ribbon form DNA helix omitted
29
Vinyl chloride activation
30
+ NO N N HN O N N N N N O N N N N N N N N N ETHENO ( ADDUCTS FROM VINYL CHLORIDE N 2,3- dGuo 1,N 2 - dGuo 1,N 6 - dAdo 3, N 4 - dCyd HN N O H 2 N N N H 2 C CH O N7-ADDUCT N7-(2-oxoethyl)-dGuo
31
ACTIVATION OF DIMETHYLNITROSAMINE GENERAL STRUCTURE azotic acid monomethyl nitrosamine
32
Activation of 2-AAF (general for amines) other amines of commercial importance
33
Nitrenium ion adducts C8 adduct of AAF C1 adduct of AAF C8 adduct 1-aminopyrene
34
NMR structure of 1-aminopyrene adduct at C8 of dG opposite dA modified dG pyrene
35
Activation of nitroaromatics-multiple pathways, MFO and nitroreductase Other important environmental nitro- PAH
36
Deamination via diazotization reaction
37
Deamination by bisulfite reaction
38
Direct acting mutagens
39
P450 catalytic cycle “compound I” “compound 0”
41
Proposed mode of action of PCBs
43
2O 2 + 2H + H 2 O 2 + 0 2 H 2 0 2 + M n+ M (n+1)+ + HO - + HO SOD - Hydroxyl radical from action of superoxide dismutase followed by Fenton chemistry Fenton reaction
44
Reductive dehalogenation of carbon tetrachloride
45
LIPID PEROXIDATION RADICAL CHAIN
46
α β β-CLEAVAGE TO UNSATURATED ALDEHYDES
47
Formation of Malondialdehyde
48
OH O malondialdehyde (enol form) N N N O N N dR 1,N 2 -propeno dG O N OH N N O N N dR NHO N N O N N dR acrolein CH 3 O NH 3 C OH N N O N N dR crotonaldehyde O OH N OH N N O N N dR HO 4-hydroxy-2-nonenal 4 isomers O OH O 4-hydroxy-2,3-epoxynonanal N O N N dR N N N O N N dR N N O 1,N 2 -etheno dG 4 isomers + + 1,N 2 -propano dG, two isomers OH (M 1 G)
49
dGuo from initial 2,3-epoxy-4-hydroxynonanal adducts
50
HN N N N O dR H 2 N HN N N H N O dR H 2 N O N N NH O dR H 2 N N O H 2 N H 2 N O NH dR 2,2-diamino-4-[(2’-deoxyribosyl)- amino]-5(2H)-oxazolone dZ H 2 O 1-electron oxidation products of dGuo NH N N H N dR H 2 N O O -e - -e -
51
HN N N N H 2 N O dR HN N N H N H 2 N O dR O HN N NH NH H 2 N O dR H O N N NH dR O H 2 N O N NH dR O H 2 N H 2 N HO HO HO 8-oxodGuo FapyGuo Hydroxyl radical oxidation of dGuo 2,2-diamino-4-[(2’-deoxyribosyl)- amino]-5(2H)-oxazolone dZ
52
N N NH 2 O dR OH OH H H HN N O O dR OH OH CH 3 H N N NH 2 OH O dR 5-hydroxy dCyd 5,6-dihydroxy-5,6-dihydro dCyd dThyd glycol Products of Hydroxyl Radical Oxidation of Bases
54
Oxidation of 8-oxo-Gua by peroxynitrite (ONOO - )
56
Formation of base propenal Reaction of base propenal with dGuo to form M 1 G
57
M 1 G FROM BASE PROPENAL
59
Cation radicals from 1-electron oxidation of BP and 6-MePB benzo[a]pyrene cation radical6-methylbenzo[a]pyrene cation radical
60
Adducts of the cation radicals of BP and 7,12-DMBA with dAdo and dGuo
61
Pathway for formation of adducts of dGuo from the cation radical of DMBA
62
Pathway to adducts of dAdo from 1-electron oxidation of dibenzo[a,l]pyrene
63
“ene-diyne” class of antineoplastic drugs H1´ abstraction from deoxyribose From: Chem. Rev. 1998, 98, 1089-1107
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.