Download presentation
Presentation is loading. Please wait.
1
y V =0 a V =V0 x b b V =0 z 𝛻 2 𝑉=0
3
𝑌𝑑 2 (𝑋) 𝑋𝑌𝑑 𝑥 2 + 𝑋𝑑 2 (𝑌) 𝑋𝑌𝑑 𝑦 2 = 0
𝛻 2 𝑉=0 𝜕 2 𝑉 𝜕 𝑥 𝜕 2 𝑉 𝜕 𝑦 2 = 0 𝑉 𝑥,𝑦 =𝑋 𝑥 𝑌(𝑦) 𝜕 2 (𝑋𝑌) 𝜕 𝑥 𝜕 2 (𝑋𝑌) 𝜕 𝑦 2 = 0 𝑌𝜕 2 (𝑋) 𝜕 𝑥 𝑋𝜕 2 (𝑌) 𝜕 𝑦 2 = 0 𝑌𝑑 2 (𝑋) 𝑑 𝑥 𝑋𝑑 2 (𝑌) 𝑑 𝑦 2 = 0 𝑌𝑑 2 (𝑋) 𝑋𝑌𝑑 𝑥 𝑋𝑑 2 (𝑌) 𝑋𝑌𝑑 𝑦 2 = 0 𝑑 2 (𝑋) 𝑋𝑑 𝑥 𝑑 2 (𝑌) 𝑌𝑑 𝑦 2 = 0
4
𝑑 2 (𝑋) 𝑋𝑑 𝑥 2 = 𝐶 1 and 𝑑 2 (𝑌) 𝑌𝑑 𝑦 2 = 𝐶 2
𝑑 2 (𝑋) 𝑋𝑑 𝑥 𝑑 2 (𝑌) 𝑌𝑑 𝑦 2 = 0 𝑋 𝑥 =𝐴 𝑒 𝑘𝑥 +𝐵 𝑒 −𝑘𝑥 Y 𝑦 =𝐶𝑠𝑖𝑛(𝑘𝑦)+𝐷𝑐𝑜𝑠(𝑘𝑦) 𝑑 2 (𝑋) 𝑋𝑑 𝑥 2 = 𝐶 1 and 𝑑 2 (𝑌) 𝑌𝑑 𝑦 2 = 𝐶 2 𝐶 1 = 𝑘 2 and 𝐶 2 = −𝑘 2 Completely general up to this point 𝑑 2 (𝑋) 𝑋𝑑 𝑥 2 = 𝑘 2 and 𝑑 2 (𝑌) 𝑌𝑑 𝑦 2 = −𝑘 2
5
Y 𝑦 =𝐶𝑠𝑖𝑛(𝑘𝑦)+𝐷𝑐𝑜𝑠(𝑘𝑦)
𝑋 𝑥 =𝐴 𝑒 𝑘𝑥 +𝐵 𝑒 −𝑘𝑥 Y 𝑦 =𝐶𝑠𝑖𝑛(𝑘𝑦)+𝐷𝑐𝑜𝑠(𝑘𝑦) Boundary conditions Symmetric in x: ⟹𝐴=𝐵 𝑋 𝑥 =𝐴 (𝑒 𝑘𝑥 + 𝑒 −𝑘𝑥 ) 𝑋 𝑥 =2𝐴 (𝑒 𝑘𝑥 + 𝑒 −𝑘𝑥 ) 2 =2𝐴 cosh (𝑘𝑥) ⟹𝑉 𝑥,𝑦 =2𝐴 cosh (𝑘𝑥)(𝐶𝑠𝑖𝑛 𝑘𝑦 +𝐷𝑐𝑜𝑠 𝑘𝑦 ) ⟹𝑉 𝑥,𝑦 = cosh (𝑘𝑥)(𝐶𝑠𝑖𝑛 𝑘𝑦 +𝐷𝑐𝑜𝑠 𝑘𝑦 )
6
⟹𝑉 𝑥,𝑦 = cosh (𝑘𝑥)(𝐶𝑠𝑖𝑛 𝑘𝑦 +𝐷𝑐𝑜𝑠 𝑘𝑦 )
⟹𝑉 𝑥,0 = 0= 𝐷𝑐𝑜𝑠 0 ) ⟹𝑉 𝑥,𝑦 =𝐶cosh (𝑘𝑥)𝑠𝑖𝑛 𝑘𝑦 ⟹𝑉 𝑥,𝑎 =0=𝐶cosh (𝑘𝑥)𝑠𝑖𝑛 𝑘𝑎 ⟹𝑘𝑎=𝑛𝜋 ⟹𝑉 𝑥,𝑦 =𝐶cosh (𝑛𝜋𝑥/𝑎)𝑠𝑖𝑛 𝑛𝜋𝑦/𝑎
7
⟹𝑉 𝑥,𝑦 =𝐶cosh (𝑛𝜋𝑥/𝑎)𝑠𝑖𝑛 𝑛𝜋𝑦/𝑎
𝑛=0,1,2,3… One boundary condition to go
8
⟹𝑉 𝑥,𝑦 =𝐶cosh (𝑛𝜋𝑥/𝑎)𝑠𝑖𝑛 𝑛𝜋𝑦/𝑎
𝑛=0,1,2,3… ⟹𝑉 𝑏,𝑦 = 𝑉 0 =𝐶cosh (𝑛𝜋𝑏/𝑎)𝑠𝑖𝑛 𝑛𝜋𝑦/𝑎 Never going to happen ⟹𝑉 𝑥,𝑦 = 𝐶 𝑛 cosh (𝑛𝜋𝑥/𝑎)𝑠𝑖𝑛 𝑛𝜋𝑦/𝑎 ⟹𝑉 𝑥,𝑦 = 𝑛=1 ∞ 𝐶 𝑛 cosh (𝑛𝜋𝑥/𝑎)𝑠𝑖𝑛 𝑛𝜋𝑦/𝑎 ⟹𝑉 𝑏,𝑦 = 𝑉 0 = 𝑛=1 ∞ 𝐶 𝑛 cosh (𝑛𝜋𝑏/𝑎)𝑠𝑖𝑛 𝑛𝜋𝑦/𝑎
9
⟹ 𝑉 0 = 𝑛=1 ∞ 𝐶 𝑛 cosh (𝑛𝜋𝑏/𝑎)𝑠𝑖𝑛 𝑛𝜋𝑦/𝑎
10
⟹ 𝑉 0 = 𝑛=1 ∞ 𝐶 𝑛 cosh (𝑛𝜋𝑏/𝑎)𝑠𝑖𝑛 𝑛𝜋𝑦/𝑎
11
0 𝑎 𝑠𝑖𝑛 𝑛𝜋𝑦/𝑎 𝑠𝑖𝑛 𝑛 ′ 𝜋𝑦/𝑎 𝑑𝑦 =0 𝑓𝑜𝑟 𝑛≠ 𝑛 ′
⟹ 0 𝑎 𝑉 0 𝑠𝑖𝑛 𝑛 ′ 𝜋𝑦/𝑎 𝑑𝑦= 𝑛=1 ∞ 𝐶 𝑛 cosh (𝑛𝜋𝑏/𝑎) 0 𝑎 𝑠𝑖𝑛 𝑛𝜋𝑦/𝑎 𝑠𝑖𝑛 𝑛 ′ 𝜋𝑦/𝑎 𝑑𝑦 0 𝑎 𝑠𝑖𝑛 𝑛𝜋𝑦/𝑎 𝑠𝑖𝑛 𝑛 ′ 𝜋𝑦/𝑎 𝑑𝑦 =0 𝑓𝑜𝑟 𝑛≠ 𝑛 ′ = 𝑎 2 𝑓𝑜𝑟 𝑛= 𝑛 ′ Orthogonal, complete set of functions
12
0 𝑎 𝑠𝑖𝑛 𝑛𝜋𝑦/𝑎 𝑠𝑖𝑛 𝑛 ′ 𝜋𝑦/𝑎 𝑑𝑦 =0 𝑓𝑜𝑟 𝑛≠ 𝑛 ′
⟹ 0 𝑎 𝑉 0 𝑠𝑖𝑛 𝑛 ′ 𝜋𝑦/𝑎 𝑑𝑦= 𝑛=1 ∞ 𝐶 𝑛 cosh (𝑛𝜋𝑏/𝑎) 0 𝑎 𝑠𝑖𝑛 𝑛𝜋𝑦/𝑎 𝑠𝑖𝑛 𝑛 ′ 𝜋𝑦/𝑎 𝑑𝑦 0 𝑎 𝑠𝑖𝑛 𝑛𝜋𝑦/𝑎 𝑠𝑖𝑛 𝑛 ′ 𝜋𝑦/𝑎 𝑑𝑦 =0 𝑓𝑜𝑟 𝑛≠ 𝑛 ′ = 𝑎 2 𝑓𝑜𝑟 𝑛= 𝑛 ′ ⟹ 0 𝑎 𝑉 0 𝑠𝑖𝑛 𝑛 ′ 𝜋𝑦/𝑎 𝑑𝑦= 𝐶 𝑛 ′ cosh ( 𝑛 ′ 𝜋𝑏/𝑎) 𝑎 2 ⟹ 0 𝑎 𝑉 0 𝑠𝑖𝑛 𝑛 𝜋𝑦/𝑎 𝑑𝑦= 𝐶 𝑛 cosh ( 𝑛 𝜋𝑏/𝑎) 𝑎 2 0 𝑎 𝑉 0 𝑠𝑖𝑛 𝑛 𝜋𝑦/𝑎 𝑑𝑦= 𝑉 0 0 𝑎 𝑠𝑖𝑛 𝑛 𝜋𝑦/𝑎 𝑑𝑦=0 𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛 = 2𝑎 𝑉 0 𝑛𝜋 𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑
13
⟹𝑉 𝑥,𝑦 = 𝑛=1,3,5… ∞ 𝐶 𝑛 cosh (𝑛𝜋𝑥/𝑎)𝑠𝑖𝑛 𝑛𝜋𝑦/𝑎
⟹𝑉 𝑥,𝑦 = 𝑛=1,3,5… ∞ 4 𝑉 0 𝑛𝜋 cosh (𝑛𝜋𝑥/𝑎) cosh (𝑛𝜋𝑏/𝑎) sin (𝑛𝜋𝑦/𝑎)
14
⟹𝑉 𝑥,𝑦 = 𝑛=1,3,5… ∞ 4 𝑉 0 𝑛𝜋 cosh (𝑛𝜋𝑥/𝑎) cosh (𝑛𝜋𝑏/𝑎) sin (𝑛𝜋𝑦/𝑎)
4 𝑉 0 𝜋 cosh (𝜋𝑥/𝑎) cosh (𝜋𝑏/𝑎) sin (𝜋𝑦/𝑎) + 4 𝑉 0 3𝜋 cosh (3𝜋𝑥/𝑎) cosh (3𝜋𝑏/𝑎) sin (3𝜋𝑦/𝑎)
15
Matlab code to visualize V(x,y)
[x,y]=meshgrid(-50:1:50,0:1:100); v=0; for i=1:100 v=v+(4./pi)*(cosh(((2*i-1)*pi*x)/100).*sin((2*i-1)*pi*y/100))/((2*i-1)*cosh((2*i-1)*pi/2)); surf(v); view(-27,38); end surf(v) axis([ ]) view(-27,38)
16
Numerical technique to solve the same problem (relaxation method)
Uses mean-value theorem Create a 100 100 grid for V(x,y) or V(i,j) Impose the boundary conditions first by setting initial values for certain V(i,j) Generate V(i,j) for the entire grid by using mean value theorem: V(i,j)= (V(i-1,j-1)+V(i,j-1)+V(i+1,j-1)+V(i+1,j)+V(i+1,j+1)+V(i,j+1)+V(i-1,j+1)+V(i-1,j))/8; 5. Iterate many times till you reach equilibrium (hence relaxation). V(i-1,j+1) V(i,j+1) V(i+1,j+1) V(i,j) V(i-1,j) V(i+1,j) V(i-1,j-1) V(i,j-1) V(i+1,j-1)
17
Numerical technique to solve the same problem (relaxation method): MATLAB code
%create 100 by 100 grid for V(i,j) for i=1:100 for j=1:100 V(i,j)=0; end %Impose the boundary conditions first by setting initial values for certain V(i,j) V(i,1)=1; V(i,100)=1; surf(V) view(-27,38); pause %pause for effect for k = 1:5000 %iterate 5000 times for i = 2:99 for j = 2:99 V(i,j)= (V(i-1,j-1)+V(i,j-1)+V(i+1,j-1)+V(i+1,j)+V(i+1,j+1)+V(i,j+1)+V(i-1,j+1)+V(i-1,j))/8; %mean value theorem view(-27,38) pause(0.005)
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.