Download presentation
Presentation is loading. Please wait.
Published byLily Charles Modified over 8 years ago
1
Roberto Versaci Heavy Quarks and Leptons '06 – München / 26 1 New results from KLOE Roberto Versaci on behalf of the KLOE collaboration
2
Roberto Versaci Heavy Quarks and Leptons '06 – München / 26 2 Outline ● KLOE and DAFNE Neutral kaons Charged kaons Hadronic physics Future plans Main K L branching ratios K L p + p – (g) K L p e n e form factor K S p + p - (g) / K S p 0 p 0 K S p e n e ; A S ; form factor Lifetime Semileptonic decays K ± ® m ± n m (g) Test of CP, CPT, DS=DQ rule, QM Determination of V US and CP parameters Test of cPT theories
3
Roberto Versaci Heavy Quarks and Leptons '06 – München / 26 3 Days of run pb -1 KLOE and DAFNE electron-positron collider √s = m f = 1.019 GeV s(f) ≈ 3 mb ~2.5 fb -1 collected LINAC KLOE e - 510 MeV e + Frascati - LNF Decay BR(%) K + K - 49.2 K L K S 34.0 rp+ppp 15.3 hg 1.3
4
Roberto Versaci Heavy Quarks and Leptons '06 – München / 26 4 KLOE and DAFNE Endcap – Barrel modules Pb / scintillating fibers 4880 PMT p/e PID based on TOF s t = 57 ps / √(E[GeV]) 100 ps s E = 0.057 / √(E[GeV])
5
Roberto Versaci Heavy Quarks and Leptons '06 – München / 26 5 KLOE and DAFNE Stereo geometry, 4m diameter 52140 wires 90% Helium, 10% isobutane s rf = 150 mm, s z = 2 mm s p /p ~ 4 x 10 -3
6
Roberto Versaci Heavy Quarks and Leptons '06 – München / 26 6 Tagging The f decay at rest provides monochromatic and pure kaon beams The detection of a K guarantees the presence of the K with known momentum Tag mechanism Normalization to the number of tags allows a precise measurement of absolute BRs K + K - 1.5 x 10 6 /pb -1 p* = 127 MeV/c l ± = 95 cm K L K S 10 6 /pb -1 p* = 110 MeV/c l S = 6 mm l L = 3.4 m K mnmK pp0K mnmK pp0 K S p + p - K L interacts in EMC
7
Roberto Versaci Heavy Quarks and Leptons '06 – München / 26 7 Neutral kaons ● Main K L branching ratios ● K L p + p – (g) ● K L lifetime ● K L p e n e form factor ● K S p + p - (g) / K S p 0 p 0 ● K S p e n e ; A S ; form factor Data sample between 200 and 400 pb -1
8
Roberto Versaci Heavy Quarks and Leptons '06 – München / 26 8 Main K L BRs BR (K L pen e ) = 0.4049 ± 0.0010 ± 0.0030 BR (K L pmn m ) = 0.2726 ± 0.0008 ± 0.0022 BR (K L p 0 p 0 p 0 ) = 0.2018 ± 0.0005 ± 0.0026 BR (K L p + p - p 0 ) = 0.1276 ± 0.0006 ± 0.0016 Error dominated by error in t L, needed for geometrical acceptance PLB 632 (2006) BR( pen + pmn + p + p - p 0 + p 0 p 0 p 0 ) from KLOE + BR( p + p - + p 0 p 0 + g g ) from PDG'04 = 1.0104 ± 0.0076 ~ 0.36 %
9
Roberto Versaci Heavy Quarks and Leptons '06 – München / 26 9 Main K L BRs BR (K L pen e ) = 0.4007 ± 0.0006 ± 0.0014800k evts BR (K L pmn m ) = 0.2698 ± 0.0006 ± 0.0014500k evts BR (K L p 0 p 0 p 0 ) = 0.1997 ± 0.0005 ± 0.0019700k evts BR (K L p + p - p 0 ) = 0.1263 ± 0.0005 ± 0.0011200k evts Normalize S x BR(K L x) = 1 and solve for t L taking KLOE BRs & BR( p + p - + p 0 p 0 + gg ) from PDG'04 Average with KLOE direct measurement PLB 626 (2005) : PLB 632 (2006) t L = (50.72 0.17 0.33 ) ns t L = (50.84 0.23 ) ns
10
Roberto Versaci Heavy Quarks and Leptons '06 – München / 26 10 K L p en e form factor Form factor expansion: ● linear ● quadratic one pole parametrization: PLB 636 (2006) M V = ( 870 6 7 ) MeV P(c 2 ) = 0.924 l + = (28.6 0.5 0.4) 10 -3 c 2 / dof = 330 / 363 P(c 2 ) = 0.89 l + ' = ( 25.5 1.5 1.0 ) 10 -3 l + '' = ( 1.4 0.7 0.4 ) 10 -3 c 2 / dof = 325 / 362 P(c 2 ) = 0.92 f + (t) = 1 + l + [t/m p 2 ] f + (t) = 1 + l + ' [t/m p 2 ] + ½ l + '' [t/m p 2 ] 2 LinearQuadratic M V 2 M V 2 - t t/m p 2
11
Roberto Versaci Heavy Quarks and Leptons '06 – München / 26 11 Plus other measurements |e| = (2.216 0.013) 10 -3 ● Measurement of the ratio BR (K L p + p – ) / BR (K L p m n m ) ● BR (K L p m n m ) taken from KLOE measurement PLB 638 (2006) K L p + p – (g) BR (K L p + p - ) = 1.963 0.012 stat 0.017 syst 10 -3 √(E 2 miss +p 2 miss )(MeV)
12
Roberto Versaci Heavy Quarks and Leptons '06 – München / 26 12 Averaged with KLOE '02 Common syst. accounted for ● K S p + p - (g) : 2 tracks from the IP ● K S p 0 p 0 : 4 photons from the IP Hep-ex/0601025 EPJC in press Time stability BR(K S p + p – (g))/BR(K S p 0 p 0 ) R p S = 2.2555 0.0056 R p S = 2.2549 0.0054 BR(K S p + p – (g)) = ( 69.196 0.051 ) 10 -2 BR(K S p 0 p 0 ) = ( 30.687 0.051 ) 10 -2 Most precise values
13
Roberto Versaci Heavy Quarks and Leptons '06 – München / 26 13 PLB 636 (2006) E miss – P miss ● Normalized to BR(K S p + p - ) ● K S p + p - background rejected using TOF PID ● Signal from fit to E miss – P miss spectrum Allows test of CP, CPT and DS = DQ rule K S p en e (g) Linear slope of the form factor l + = ( 33.9 ± 4.1 ) x 10 -3 BR(K S p e n e ) = (7.082 0.092) 10 -4
14
Roberto Versaci Heavy Quarks and Leptons '06 – München / 26 14 G (K S p - e + n e ) - G (K S p + e - n e ) G (K S p - e + n e ) + G (K S p + e - n e ) A S = = (1.5 ± 9.6 ± 2.9) x 10 -3 G S vs G L : test of DS=DQ rule A S vs A L : tests of CP and CPT A S - A L = 4 (Re d + Re x_ ) A S + A L = 4 (Re e - Re y ) 2 Re x + = (G S -G L ) / (G S +G L ) Re x + = (-1.2 3.6) 10 -3 Re x_ = (-0.8 2.5) 10 -3 Re y = (0.4 2.5) 10 -3 BR(K S p - e + n e ) = (3.528 0.062) 10 -4 BR(K S p + e - n e ) = (3.517 0.058) 10 -4 With full statistics (5x) A S to 3 x 10 -3 PLB 636 (2006) K S p en e (g)
15
Roberto Versaci Heavy Quarks and Leptons '06 – München / 26 15 PLB 619 (2005) ● K L crash and 6 photons ● Kinematic fit ● Reject events with tracks from the IP ● Cuts using 4 vs 6 photons pairing ● Main background source: K S p 0 p 0 + 2 fake clusters ● Normalization to K S p 0 p 0 CP violation K S p 0 p 0 p 0 BR(K S p 0 p 0 p 0 ) < 1.2 10 -7 90% C.L. A(K S 3p 0 ) < 0.018 90% C.L. A(K L 3p 0 ) h 000 =
16
Roberto Versaci Heavy Quarks and Leptons '06 – München / 26 16 To be published Phys. Lett. B QM and CPT tests Loss of coherence z ≠ 0 QM Decoherence parameter depends on the basis: z 00, z SL Quantum gravity may result in QM and CPT (effect in K 0 K 0 ) Using quantum interfence in f K S K L p + p - p + p - I(t 1,t 2,g)g ~ O(m K 2 /M P ) ≠ 0 I(t 1,t 2,w)w = |w|e iW ≠ 0 I(t1,t2,z) ∝ exp(-G L t 1 -G S t 1 ) + exp(-G S t 1 -G L t 2 ) - 2(1-z) exp(-(G S +G L )(t 1 +t 2 )) / 2cos(DmDt)
17
Roberto Versaci Heavy Quarks and Leptons '06 – München / 26 17 No evidence for QM and CPT Re w x10 2 Im w x10 2 68% CL 95% CL K L regeneration on the beam pipe Data: 7366 evts QM and CPT tests z SL = 0.018 0.040 0.007c 2 /dof = 29.7/32 z 00 = (0.10 0.21 0.04) 10 -5 c 2 /dof = 29.6/32 g = (1.3 +2.8 -2.4 0.4) 10 -21 GeVc 2 /dof = 33/32 w = (1.1 +8.7 -5.3 0.9) 10 -4 c 2 /dof = 29/31 w = (3.4 +4.8 -5.0 0.6) 10 -4 To be published Phys. Lett. B
18
Roberto Versaci Heavy Quarks and Leptons '06 – München / 26 18 Bell-Steinberger relation CPT test in the kaons system Assumes the unitarity conservation 2(m L -m S ) G S -G L tan f SW = d parametrize CPT violation d can be used to constrain Dm K0 and DG
19
Roberto Versaci Heavy Quarks and Leptons '06 – München / 26 19 CP and CPT tests Using the Bell-Steinberger relation Submitted to JHEP 10 -18 GeV 10 - 2 10 - 4 (e) = (159.6 1.3) 10 -5 (d) = (0.4 2.1) 10 -5 -5.3 10 -19 GeV < m K0 -m K0 < 6.3 10 -19 GeV@ 95% C.L.
20
Roberto Versaci Heavy Quarks and Leptons '06 – München / 26 20 Charged kaons Lifetime Semileptonic decays K ± ® m ± n m (g) Data sample between 200 and 400 pb -1
21
Roberto Versaci Heavy Quarks and Leptons '06 – München / 26 21 K ± lifetime Given the tag, look for the decay vertex of the second kaon ● Method #1: fit t * distribution from decay length Measure the kaon decay length taking into account the energy loss:t * = S i DL i / b i g i c ● Method #2: Directly measure decay time (in progress) Use K p p 0 decay to reconstruct decay time from p 0 cluster time Two methods allow cross check of systematics Preliminary t = ( 12.367 0.044 stat 0.065 syst ) ns
22
Roberto Versaci Heavy Quarks and Leptons '06 – München / 26 22 K ± semileptonic decays ● Fit of the charged secondary square mass spectrum m 2 lept ● Mass of charged secondary from TOF measurement ● 0 reconstruction from 2 neutral clusters in EMC ● Separate measurements for each charge and each tag 4 independent normalization samples Preliminary BR(K p 0 e n e ) = (5.047 0.019 0.039) 10 -2 BR(K p 0 m n m ) = (3.310 0.016 0.045) 10 -2
23
Roberto Versaci Heavy Quarks and Leptons '06 – München / 26 23 BR (K ± ®m ± n m (g)) PLB 632(2006) ● Fit of the momentum distribution of the charged secondary, p* ● Background subtraction, p 0 in the final state ● Efficiency evaluated directly on data using uncorrelated sample selected using EMC info ● 8 x 10 5 events ● Total accuracy 0.27% BR(K m n m (g)) = 0.6366 0.009 0.015
24
Roberto Versaci Heavy Quarks and Leptons '06 – München / 26 24 V us summary l' + = 0.02542(31) l'' + = 0.00129(3) (Pole model: KLOE, KTeV and NA48 av.) l 0 = 0.01587(95) (KTeV and ISTRA+ av.) ● f + (0) = 0.961(8) Leutwyler and Roos [Phys. C25, 91, 1984] ● Vud=0.97377(27) Marciano and Sirlin [Phys.Rev.Lett.96 032002,2006] Slopes From unitarity V US f + (0)=0.2187(22)
25
Roberto Versaci Heavy Quarks and Leptons '06 – München / 26 25 V ud - V us plane |V us /V ud | can be extracted from the ratio: from lattice MILC Coll. PoS LAT2006 Fitting with V ud, V us + unitarity constraint V ud V us (K l3 ) G (K mn m (g)) |V US | 2 f K G (p mn m (g)) |V US | 2 f p ∝ fKfpfKfp = 1.208(2)( +7 -14 ) V us / V ud = 0.2286( +20 -11 ) V us = 0.2246( +9 -13 ) V ud = 0.97377(27) c 2 /dof = 0.046/2 P(c 2 ) = 0.97 V us = 0.2257(7) V ud = 0.97420(16) c 2 /dof = 3.94/1 P(c 2 ) = 0.05 unitarity V us / V ud
26
Roberto Versaci Heavy Quarks and Leptons '06 – München / 26 26 What's next? 2004-2005 data (~2 fb -1 ) to be analyzed Complete K ± semileptonic and lifetime cPT, CPV, CPTV V US, DS = DQ rule Lepton universality K L peng K S gg K S p + p - e + e - K S pmn K S p + p - p 0 K S e + e - K ± p ± p 0 K ± e ± n / K ± m ± n K ± p 0 p 0 e ± n On going analyses
27
Roberto Versaci Heavy Quarks and Leptons '06 – München / 26 27 Spare slides
28
Roberto Versaci Heavy Quarks and Leptons '06 – München / 26 28 h physics F h' g / h gh-h' mixing angle h p 0 g g cPT test h mass h p + p - p 0, p 0 p 0 p 0 m u -m d Dalitz plots h ggg, p + p - forbidden C, P, CP h p + p - e + e - CP
29
Roberto Versaci Heavy Quarks and Leptons '06 – München / 26 29 K L lifetime PLB 626 (2005) 100M K L p 0 p 0 p 0 events ● Require ≥ 3 g s ● e(L K ) ~99%, uniform in L ● Background ~1.3% Use K L p + p - p 0 to determine ● Calorimeter timescale ● Photon-vertex efficiency ● Resolution: s L (gg) ~ 2 cm Direct measurement: Average with result from K L BRs: t L = (50.84 0.23 ) ns t L = (50.92 0.17 0.25 ) ns
30
Roberto Versaci Heavy Quarks and Leptons '06 – München / 26 30 K L selection ● 328 pb -1 split in 14 samples ● Tag given by K S p + p - e Tag ~63% ● K L kinematic from K S ● Best separation using P miss – E miss ● K e3 K m3 separation using TOF & energy deposit in EMC ● 2g invariant mass and timing P miss – E miss
31
Roberto Versaci Heavy Quarks and Leptons '06 – München / 26 31 K L p + p – (g) h + - = e + e' ≈ e | h + - | = ((G(K p + p - ))/(G(K p + p - ))) | h + - | has been determined using: t KL from KLOE t KS from PDG'04 BR(K S p + p - ) from KLOE e has been determined using: Re(e'/e) PDG'04 arg e' = arg e |e| = (2.216 0.013) 10 -3 | h + - | = (2.219 0.013) 10 -3
32
Roberto Versaci Heavy Quarks and Leptons '06 – München / 26 32 PLB 636 (2006) E miss – P miss ● Normalized to BR(K S p + p - ) ● K S p + p - background rejected using TOF PID ● Signal from fit to E miss – P miss spectrum Allows test of CP, CPT and DS = DQ rule K S p en e (g)
33
Roberto Versaci Heavy Quarks and Leptons '06 – München / 26 33 PLB 636 (2006) Consistent with DS = DQ rule Charge asymmetry A S = (1.5 ± 9.6 ± 2.9) x 10-3 With full statistics (5x) KLOE will measure A S to 3 x 10 -3 Linear slope of the form factor l + = ( 33.9 ± 4.1 ) x 10 -3 BR(K S p - e + n e ) = (3.528 0.062) 10 -4 BR(K S p + e - n e ) = (3.517 0.058) 10 -4 BR(K S p e n e ) = (7.082 0.092) 10 -4 K S p en e (g)
34
Roberto Versaci Heavy Quarks and Leptons '06 – München / 26 34 G (K S p - e + n e ) - G (K S p + e - n e ) A S = Comparison of charge asymeetries A S and A L allows tests of CP and CPT Comparison of decay widths allows test of DS=DQ rule A S - A L = 4 (Re d + Re x_ ) A S + A L = 4 (Re e - Re y ) 2 Re x + = (G S -G L ) / (G S +G L ) Re x + = (-1.2 3.6) 10 -3 Re x_ = (-0.8 2.5) 10 -3 Re y = (0.4 2.5) 10 -3 K S p en e (g)
35
Roberto Versaci Heavy Quarks and Leptons '06 – München / 26 35 K ± lifetime Discrepancy between in-flight and at-rest measurements Discrepancy among different stoppers in at-rest measurements Confirmation is needed
36
Roberto Versaci Heavy Quarks and Leptons '06 – München / 26 36 4 independent normalization samples (2 tag x 2 charges) 410 pb -1 self-triggering tags from 2001 and 2002 data Fit of the charged secondary square mass spectrum m 2 lept K and K rejected cutting on p*(m ) Efficiency evaluated from MC and corrected for Data/MC ratio K ± semileptonic decays
37
Roberto Versaci Heavy Quarks and Leptons '06 – München / 26 37 e+e+e+e+ Two tracks vertex in the FV: 40 cm < < 150 cm Track of charged secondary extrapolated to EMC Two body decays cut: p*(m ) < 195 MeV/c 0 reconstruction: 2 neutral clusters in EMC with TOF matching the kaon decay vertex Mass of charged secondary from TOF measurement K ± l3 signal selection
38
Roberto Versaci Heavy Quarks and Leptons '06 – München / 26 38 with a undergoing a Dalitz decay, or with a wrong cluster associated to give a m l 2 under the Ke3 peak cut requiring (E miss – P miss ) < 90 MeV with early , give m l 2 under the K 3 peak rejected using the missing momentum of the secondary track in the pion rest frame (P* sec < 90 MeV) K 0 0 K 0 K nucl.int. K3K3 Ke 3 K ± l3 background (I)
39
Roberto Versaci Heavy Quarks and Leptons '06 – München / 26 39 The residual background is ≈ 1.5% of the selected K ± l3 sample. It has m lept 2 ≈ m 2 K nucl.int. The cuts reject ≈ 96% of the background events The efficiency on the signal is ≈ 50% for both K e3 and K 3 K ± l3 background (II)
40
Roberto Versaci Heavy Quarks and Leptons '06 – München / 26 40 V us from semileptonic decays
41
Roberto Versaci Heavy Quarks and Leptons '06 – München / 26 41
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.