Download presentation
Presentation is loading. Please wait.
1
Spectroscopy and the evolution of hot subdwarf stars
Peter Nemeth Astronomical Institute of the Czech Republic
2
Pannon Observatory and Visitor Center Bakonybél
K. U. Leuven - Nov. 9., 2012.
3
Subdwarf stars? The Hertzsprung-Russell diagram
Red Giants, White dwarfs. Stellar evolution Stellar populations Cool/hot subdwarfs Globular cluster CMD EHB stars. Heavy traffic of evolved stars around the EHB K. U. Leuven - Nov. 9., 2012.
4
Globular cluster CMD NGC 2880 Heber, U., 2009, ARA&A, 47, 211
Yi, S.K., 2008, ASPC, 392, 3 K. U. Leuven - Nov. 9., 2012.
5
What we know Progenitor MS mass between 1 and ~5 Mʘ
Evolved, core helium burning stars Thin hydrogen layer Many in binaries with MS or WD companions Direct evolution towards white dwarfs K. U. Leuven - Nov. 9., 2012.
6
Structure of subdwarfs
sdB sdO From Wikipedia K. U. Leuven - Nov. 9., 2012.
7
Spectral classification
sdO – dominant H and He II absorption lines sdB – dominant H lines, weak He I absorption lines K. U. Leuven - Nov. 9., 2012.
8
A GALEX sample K. U. Leuven - Nov. 9., 2012.
9
The sample 694 UV-excess objects, NUV-V < 0.5
7 observing runs, ~200 targets Low-resolution, optical spectroscopy Modeling with TLUSTY-SYNSPEC Paper I: 52 stars, interpolation in 3 grids, H, He Paper II: 180 stars, steepest-descent with a constant level structure, H, He, CNO K. U. Leuven - Nov. 9., 2012.
10
The fitting method Green: Model, T = K, log g = 5.6, log He = -1, log CNO = -2 Red: J , T = K, log g = 4.5, log He = -0.4 log C = -2.8, log N = -2.9, log O < -2.6 K. U. Leuven - Nov. 9., 2012.
11
The fitting method Green: Model, T = K, log g = 5.6, log He = -1, log CNO = -2 Red: J , T = K, log g = 4.5, log He = -0.4 log C = -2.8, log N = -2.9, log O < -2.6 K. U. Leuven - Nov. 9., 2012.
12
Composite spectra K. U. Leuven - Nov. 9., 2012.
13
Temperature – gravity K. U. Leuven - Nov. 9., 2012.
14
Abundances Multiple dichotomies
Can abundance patterns indicate the evolution or other properties, like pulsations, of these stars? HST STIS shows high abundances of iron-peak elements, but not much Fe. (O’Toole & Heber, 2006) Slow, rapid and hybrid pulsators are well separated, but not preictable K. U. Leuven - Nov. 9., 2012.
15
Luminosity distribution
K. U. Leuven - Nov. 9., 2012.
16
Spectral evolution? Canonical Hot-flasher
e.g.: Zhang X., Jeffery S. C., 2012, MNRAS, 419, 452 e.g.: Miller Bertolami M. M. et al., 2008, A&A, 491, 253 K. U. Leuven - Nov. 9., 2012.
17
Spectral evolution? Complicated.
UV flux induces convection, turbulence, mixing, wind ... lots of complications. (Unglaub, 2008) K. U. Leuven - Nov. 9., 2012.
18
Formation channels Canonical Hot-flasher Common Envelope
Roche Lobe Overflow WD Mergers Hot-flasher Deep mixing Shallow mixing No mixing K. U. Leuven - Nov. 9., 2012.
19
Puzzling questions How do subdwarfs form? Which formation scenarios are viable and what are their contributions to the observed SD distribution? What drives the mass-loss on the RGB? He-sdO ? sdB How clean is the observed population from ELM WD, post-AGB, CSPN stars? K. U. Leuven - Nov. 9., 2012.
20
The SD1000 Collaboration We need spectroscopy for a large sample
Repeat (and later extend) the analysis in a homogeneous way Derive homogeneous parameters Collaborations are important because subdwarfs link RGs to WDs GAIA will provide distances and masses Find binaries K. U. Leuven - Nov. 9., 2012.
21
References Zhang, X., Jeffery, S. C.; 2012, MNRAS, 419, 452
Østensen, R.H.; Comm. in Asteroseismology, 2008, 159, 75 Heber, U.; ARA&A, 2009, 47, 211 sdB sdO page on Wikipedia Zhang, X., Jeffery, S. C.; 2012, MNRAS, 419, 452 Miller Bertolami, M. M. et al.; 2008, A&A, 491, 253 Yi, S.K.; 2008, ASPC, 392, 3 O’Toole, S.J; Heber, U.; 2006, A&A, 452, 579 Unglaub, K.; 2008, A&A, 486, 923 K. U. Leuven - Nov. 9., 2012.
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.