Download presentation
Presentation is loading. Please wait.
1
Basic Statistics
2
Cornerstones of a successful use of 6
EAB/JN Stefan Andresen Cornerstones of a successful use of 6 Results World Class Business Performance Where in six sigma do we use statistics? Used for: -Validating results, ideas etc. -Understanding differences, root causes etc. -Gives a mathematic as well as a graphical view of a problem Methodology Change Management DFSS Basic Staistics
3
Different types of data
EAB/JN Stefan Andresen Different types of data Continuous Data Often obtained by use of a measuring system e.g. dB, Watts, volts etc. The usefulness of the data depends on the quality of the measurement system Discrete Data Includes percentages, attribute & counts Percentages: The proportion of items with a given characteristic; need to be able to count both occurrences and and non-occurrences, e.g. Yield Attribute data Gives only conforming or non conforming information, such as Pass/Fail, Red/Green, 1 / 0, etc. Counts Number of events per hour, per shift or other delimitations Occurrences must be independent Being continuous means that the data can always be expressed in a smaller unit of measure: e.g., Amperes ®mA ® mA months ® weeks ® days ® hours ® minutes With continuous data, the reliability of the measurement instrument is extremely important. With count data, its important to know the area of opportunity: the boundaries that define when you’ll start and stop the count. This can be a given time period, a fixed area of product etc. The occurrences must be relatively rare compared to a relatively large area of opportunity Independence is also important for all data. It means that any given measurement or occurrence is not influenced by another measurement or occurrence. DFSS Basic Staistics
4
EAB/JN Stefan Andresen
Lower Tolerance Limit Upper Tolerance Limit Yield Yield Defects Yield = Pass / Trials p(d) = (1- Yield)/100 DFSS Basic Staistics
5
EAB/JN Stefan Andresen
Discrete data - First Time Right (First Time Yield) Measures the units that avoid the hidden costs. Yes Yes Step A Good? Step B Good? Ship It! No No Fix It? No SCRAP No Fix It? Yes Yes Rework Rework COPQ DFSS Basic Staistics
6
Discrete data - Rolled Thru Yield
EAB/JN Stefan Andresen Discrete data - Rolled Thru Yield Most processes are complex interrelationships of many sub-processes. The overall performance is usually of interest to us. Rolled yield is a realistic assessment of the cumulative effect of sub-processes FTY First Process 99% First Process Rework FTY Second Process 89% Second Process Rework FTY Third Process 95% Third Process Rework First pass yield or rolled through yield for these three processes is 0.99 x 0.89 x 0.95 = .837, almost 84% Terminator DFSS Basic Staistics
7
EAB/JN Stefan Andresen
YIELD (process yield)no of operations Yield \No of op 0,8 0, , , , ,000000 0,95 0, , , , ,000000 0, , , , , ,367861 0, , , , , ,970445 DFSS Basic Staistics
8
EAB/JN Stefan Andresen
Is it fair to compare processes and products that have different levels of complexity? DPO DPO - Defects Per Opportunity DPMO DPMO - Defects Per Million Opportunities Opportunity Measurable The number of opportunities for a defect to occur, is related to the complexity involved. DFSS Basic Staistics
9
Y=e(-dpu) dpu=-lnY Yeild to DPMO?
dpu = defects per unit = DPMO*(opportunities/unit)/
10
EAB/JN Stefan Andresen
Product yield vs dpmo opp. 10000 opp. 1000 opp. 100 opp. The Design & supply wall The automation wall Den ökade komplexiteten medför att vi måste ha bättre processer. Detta accentureras av att vi ser en ytterligare ökad komplexitet i våra framtida produkter. En ökad yield minskar vårt omarbete och ökar vår lönsamhet. Vi har även konkurrenter som är bättre än oss Vi kan inte överleva om vi iinte förbättrar oss. En del konkurrenter (Motorola) säger sig ha en felkvot på under 10 ppm. 6s 5s 4s 3s DFSS Basic Staistics
11
EAB/JN Stefan Andresen
The Normal Curve Context The normal distribution provides the basis for many statistical tools and techniques. Definition A probability distribution where the most frequently occurring value is in the middle and other probabilities tail off symmetrically in both directions. This shape is sometimes called a bell-shaped curve. Characteristics Curve theoretically does not reach zero; thus the sum of all finite areas total less than 100% Curve is symmetric on either side of the most frequently occurring value The peak of the curve represents the center, or average, of the process For all practical purposes, the area under the curve represents virtually 100% of the product the process is capable of producing DFSS Basic Staistics
12
EAB/JN Stefan Andresen
Variation Standard deviation (std, s, ) Special cause variation Output power Measurement no Average, Mean-value (x, m or µ, M) Common cause variation DFSS Basic Staistics 23
13
6:th Sum 1:6 5 21 3 6 2 22 24 20 4 . 1 18 19 n 1:st 1 2 4 3 5 6 7 8 9 . 97 98 99 100 2:nd 5 1 6 3 2 . Sum 1:2 7 9 10 8 4 3:rd Sum 1:3 1 8 5 10 3 12 4 13 6 14 2 7 . 9 4:th Sum 1:4 4 12 5 16 1 14 6 19 17 2 11 3 10 . 13 7 8 5:th Sum 1:5 4 16 2 18 1 15 21 20 5 6 17 14 3 . 13
14
EAB/JN Stefan Andresen
Calculations Arithmetic Mean Average For a Sample For the whole Population Median Middle value, so that half of the data are above and half of the data are below the median. = Average of entire population or “true” mean = (x bar) Average of sample or “best estimate” for mean N = Number of observations in entire population n = Number of observations in the sample = Value of measurement x at position i DFSS Basic Staistics
15
EAB/JN Stefan Andresen
Every Normal Curve can be defined by two numbers: Mean: a measure of the center Standard deviation: a measure of spread A copy of the Z-table is located at the back of this module in their manuals. Plus Minitab can do it for them. DFSS Basic Staistics
16
EAB/JN Stefan Andresen
Observation value X1 0,4 X2 0,3 X3 0,4 X4 0,6 X5 0,5 X6 0,4 X7 0,2 X8 0,3 X9 0,5 X10 0,4 6 4 2 0, , ,3 0,4 0,5 0,6 0,7 0,8 x-m)2 n-1 The range method: N<10: Range/3 N>10 Range/4 sample = n-1 population = n DFSS Basic Staistics 28
17
Parameters to describe the spread (variability)
EAB/JN Stefan Andresen Parameters to describe the spread (variability) Range Difference between highest and lowest value of the distribution Influenced by Outliers Variance (s2) Average squared difference of data point from the average Standard Deviation Square root of the variance Commonly used parameter for variability DFSS Basic Staistics
18
EAB/JN Stefan Andresen
How to calculate Range Sample Population Variance (s2) Standard Deviation s2 = Variance of entire population, or “true” variance S2 = Variance of sample, or “best estimate” for s2 s = Standard deviation of entire population, or “true” standard deviation. S = Standard deviation of sample, or “best estimate” for s DFSS Basic Staistics
19
EAB/JN Stefan Andresen
Exercise Calculate Range, Variance and Standard deviation. Draw a normal probability plot of the result. Formulas Data R = The same data set as before are used: Range = 4 Variance = 1.78 Minitab gives So Standard deviation = sqrt = Variance - Why divide by (N-1)? Because you’ve only taken a sample – and it will underestimate the variance by a small amount – and therefore to compensate by a slightly smaller number. N-1 is the degrees of freedom Calculate 106 (101, 102, 104, 105) DFSS Basic Staistics
20
EAB/JN Stefan Andresen
Average, Range & Spread Each diagram has an average of 10, range of 18 and a variation of approx. 5,8. Imagine only looking at the result and not on the graphs. DFSS Basic Staistics
21
The normal distribution
EAB/JN Stefan Andresen The normal distribution m s -6s -5s -4s -3s s -1s s 2s 3s s 5s 6s 68.27% 95.45% As you can see, the curve is divided into a series of equal increments, each representing one standard deviation from the mean. The area under the curve represented by the first standard deviation out from the center in either direction represents approximately 34% of the total area. Together, the area represented within one standard deviation of the center is about 68% of the total area. In other words, given a data set that is normally distributed, approximately 68% of the data values should fall within one standard deviation of the center. Going out plus or minus two standard deviations represents approximately 95% of the total area; go out 3 standard deviations in either direction and you’ve accounted for more than 99% of the area. Tables have been developed that contain these listed areas, plus many more. Thus by knowing a normal curve’s mean and standard deviation, we can figure out the yields within specified “zones.” 99.73% % % % DFSS Basic Staistics
22
EAB/JN Stefan Andresen
The Z-table Area under the normal curve is equal to the probability (p, also named dpo) of getting an observation beyond Z (see the Z-table) Z A copy of the Z-table is located at the back of this module in their manuals. The Z-value is the number of stdev between average/Target and specification limit DFSS Basic Staistics
23
Normalizing standard deviations
EAB/JN Stefan Andresen Normalizing standard deviations The expected probability of having a specific value Observed value - Mean Value = Z-value Standard deviation ( the Z-table gives the probability occurrence) | x - M | std = Z DFSS Basic Staistics
24
Z-VALUES AND PROBABILITIES
EAB/JN Stefan Andresen Z-VALUES AND PROBABILITIES 68,3% -1+1 95,4% -2+2 99,7% -3+3 99,999997% -6+6 DFSS Basic Staistics
25
EAB/JN Stefan Andresen
Z – Table Area Z 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.0 5.00E-01 4.96E-01 4.92E-01 4.88E-01 4.84E-01 4.80E-01 4.76E-01 4.72E-01 4.68E-01 4.64E-01 0.1 4.60E-01 4.56E-01 4.52E-01 4.48E-01 4.44E-01 4.40E-01 4.36E-01 4.33E-01 4.29E-01 4.25E-01 0.2 4.21E-01 4.17E-01 4.13E-01 4.09E-01 4.05E-01 4.01E-01 3.97E-01 3.94E-01 3.90E-01 3.86E-01 0.3 3.82E-01 3.78E-01 3.75E-01 3.71E-01 3.67E-01 3.63E-01 3.59E-01 3.56E-01 3.52E-01 3.48E-01 0.4 3.45E-01 3.41E-01 3.37E-01 3.34E-01 3.30E-01 3.26E-01 3.23E-01 3.19E-01 3.16E-01 3.12E-01 0.5 3.09E-01 3.05E-01 3.02E-01 2.98E-01 2.95E-01 2.91E-01 2.88E-01 2.84E-01 2.81E-01 2.78E-01 0.6 2.74E-01 2.71E-01 2.68E-01 2.64E-01 2.61E-01 2.58E-01 2.55E-01 2.51E-01 2.48E-01 2.45E-01 0.7 2.42E-01 2.39E-01 2.36E-01 2.33E-01 2.30E-01 2.27E-01 2.24E-01 2.21E-01 2.18E-01 2.15E-01 0.8 2.12E-01 2.09E-01 2.06E-01 2.03E-01 2.01E-01 1.98E-01 1.95E-01 1.92E-01 1.89E-01 1.87E-01 0.9 1.84E-01 1.81E-01 1.79E-01 1.76E-01 1.74E-01 1.71E-01 1.69E-01 1.66E-01 1.64E-01 1.61E-01 1.0 1.59E-01 1.56E-01 1.5 39E01 1.52E-01 1.49E-01 1.47E-01 1.45E-01 1.42E-01 1.40E-01 1.38E-01 1.1 1.36E-01 1.34E-01 1.31E-01 1.29E-01 1.27E-01 1.25E-01 1.23E-01 1.21E-01 1.19E-01 1.17E-01 1.2 1.15E-01 1.13E-01 1.11E-01 1.09E-01 1.08E-01 1.06E-01 1.04E-01 1.02E-01 1.00E-01 9.85E-02 1.3 9.68E-02 9.51E-02 9.34E-02 9.18E-02 9.01E-02 8.85E-02 8.69E-02 8.53E-02 8.38E-02 8.23E-02 1.4 8.08E-02 7.93E-02 7.78E-02 7.64E-02 7.49E-02 7.35E-02 7.21E-02 7.08E-02 6.94E-02 6.81E-02 1.5 6.68E-02 6.55E-02 6.43E-02 6.30E-02 6.18E-02 6.06E-02 5.94E-02 5.82E-02 5.71E-02 5.59E-02 1.6 5.48E-02 5.37E-02 5.26E-02 5.16E-02 5.05E-02 4.95E-02 4.85E-02 4.75E-02 4.65E-02 4.55E-02 1.7 4.46E-02 4.36E-02 4.27E-02 4.18E-02 4.09E-02 4.01E-02 3.92E-02 3.84E-02 3.75E-02 3.67E-02 1.8 3.59E-02 3.52E-02 3.44E-02 3.36E-02 3.29E-02 3.22E-02 3.14E-02 3.07E-02 3.01E-02 2.94E-02 1.9 2.87E-02 2.81E-02 2.74E-02 2.68E-02 2.62E-02 2.56E-02 2.50E-02 2.44E-02 2.39E-02 2.33E-02 2.0 2.28E-02 2.22E-02 2.17E-02 2.12E-02 2.07E-02 2.02E-02 1.97E-02 1.92E-02 1.88E-02 1.83E-02 2.1 1.79E-02 1.74E-02 1.70E-02 1.66E-02 1.62E-02 1.58E-02 1.54E-02 1.50E-02 1.46E-02 1.43E-02 2.2 1.39E-02 1.36E-02 1.32E-02 1.29E-02 1.26E-02 1.22E-02 1.19E-02 1.16E-02 1.13E-02 1.10E-02 2.3 1.07E-02 1.04E-02 1.02E-02 9.90E-03 9.64E-03 9.39E-03 9.14E-03 8.89E-03 8.66E-03 8.42E-03 2.4 8.20E-03 7.98E-03 7.76E-03 7.55E-03 7.34E-03 7.14E-03 6.95E-03 6.76E-03 6.57E-03 6.39E-03 2.5 6.21E-03 6.04E-03 5.87E-03 5.70E-03 5.54E-03 5.39E-03 5.23E-03 5.09E-03 4.94E-03 4.80E-03 2.6 4.66E-03 4.53E-03 4.40E-03 4.27E-03 4.15E-03 4.02E-03 3.91E-03 3.79E-03 3.68E-03 3.57E-03 2.7 3.47E-03 3.36E-03 3.26E-03 3.17E-03 3.07E-03 2.98E-03 2.89E-03 2.80E-03 2.72E-03 2.64E-03 2.8 2.56E-03 2.48E-03 2.40E-03 2.33E-03 2.26E-03 2.19E-03 2.12E-03 2.05E-03 1.99E-03 1.93E-03 2.9 1.87E-03 1.81E-03 1.75E-03 1.70E-03 1.64E-03 1.59E-03 1.54E-03 1.49E-03 1.44E-03 1.40E-03 This table represents the p-value for z= 0 to 2,99 DFSS Basic Staistics
26
EAB/JN Stefan Andresen
Z – Table Area 3.0 1.35E-03 1.31E-03 1.26E-03 1.22E-03 1.18E-03 1.14E-03 1.11E-03 1.07E-03 1.04E-03 1.00E-03 3.1 9.68E-04 9.35E-04 9.04E-04 8.74E-04 8.45E-04 8.16E-04 7.89E-04 7.62E-04 7.36E-04 7.11E-04 3.2 6.87E-04 6.64E-04 6.41E-04 6.19E-04 5.98E-04 5.77E-04 5.57E-04 5.38E-04 5.19E-04 5.01E-04 3.3 4.84E-04 4.67E-04 4.50E-04 4.34E-04 4.19E-04 4.04E-04 3.90E-04 3.76E-04 3.63E-04 3.50E-04 3.4 3.37E-04 3.25E-04 3.13E-04 3.02E-04 2.91E-04 2.80E-04 2.70E-04 2.60E-04 2.51E-04 2.42E-04 3.5 2.33E-04 2.24E-04 2.16E-04 2.08E-04 2.00E-04 1.93E-04 1.86E-04 1.79E-04 1.72E-04 1.66E-04 3.6 1.59E-04 1.53E-04 1.47E-04 1.42E-04 1.36E-04 1.31E-04 1.26E-04 1.21E-04 1.17E-04 1.12E-04 3.7 1.08E-04 1.04E-04 9.97E-05 9.59E-05 9.21E-05 8.86E-05 8.51E-05 8.18E-05 7.85E-05 7.55E-05 3.8 7.25E-05 6.96E-05 6.69E-05 6.42E-05 6.17E-05 5.92E-05 5.68E-05 5.46E-05 5.24E-05 5.03E-05 3.9 4.82E-05 4.63E-05 4.44E-05 4.26E-05 4.09E-05 3.92E-05 3.76E-05 3.61E-05 3.46E-05 3.32E-05 4.0 3.18E-05 3.05E-05 2.92E-05 2.80E-05 2.68E-05 2.57E-05 2.47E-05 2.36E-05 2.26E-05 2.17E-05 4.1 2.08E-05 1.99E-05 1.91E-05 1.82E-05 1.75E-05 1.67E-05 1.60E-05 1.53E-05 1.47E-05 1.40E-05 4.2 1.34E-05 1.29E-05 1.23E-05 1.18E-05 1.13E-05 1.08E-05 1.03E-05 9.86E-06 9.43E-06 9.01E-06 4.3 8.62E-06 8.24E-06 7.88E-06 7.53E-06 7.20E-06 6.88E-06 6.57E-06 6.28E-06 6.00E-06 5.73E-06 4.4 5.48E-06 5.23E-06 5.00E-06 4.77E-06 4.56E-06 4.35E-06 4.16E-06 3.97E-06 3.79E-06 3.62E-06 4.5 3.45E-06 3.29E-06 3.14E-06 3.00E-06 2.86E-06 2.73E-06 2.60E-06 2.48E-06 2.37E-06 2.26E-06 4.6 2.15E-06 2.05E-06 1.96E-06 1.87E-06 1.78E-06 1.70E-06 1.62E-06 1.54E-06 1.47E-06 1.40E-06 4.7 1.33E-06 1.27E-06 1.21E-06 1.15E-06 1.10E-06 1.05E-06 9.96E-07 9.48E-07 9.03E-07 8.59E-07 4.8 8.18E-07 7.79E-07 7.41E-07 7.05E-07 6.71E-07 6.39E-07 6.08E-07 5.78E-07 5.50E-07 5.23E-07 4.9 4.98E-07 4.73E-07 4.50E-07 4.28E-07 4.07E-07 3.87E-07 3.68E-07 3.50E-07 3.32E-07 3.16E-07 5.0 3.00E-07 2.85E-07 2.71E-07 2.58E-07 2.45E-07 2.32E-07 2.21E-07 2.10E-07 1.99E-07 1.89E-07 5.1 1.80E-07 1.71E-07 1.62E-07 1.54E-07 1.46E-07 1.39E-07 1.31E-07 1.25E-07 1.18E-07 1.12E-07 5.2 1.07E-07 1.01E-07 9.59E-08 9.10E-08 8.63E-08 8.18E-08 7.76E-08 7.36E-08 6.98E-08 6.62E-08 5.3 6.27E-08 5.95E-08 5.64E-08 5.34E-08 5.06E-08 4.80E-08 4.55E-08 4.31E-08 4.08E-08 3.87E-08 5.4 3.66E-08 3.47E-08 3.29E-08 3.11E-08 2.95E-08 2.79E-08 2.64E-08 2.50E-08 2.37E-08 2.24E-08 5.5 2.12E-08 2.01E-08 1.90E-08 1.80E-08 1.70E-08 1.61E-08 1.53E-08 1.44E-08 1.37E-08 1.29E-08 5.6 1.22E-08 1.16E-08 1.09E-08 1.03E-08 9.78E-09 9.24E-09 8.74E-09 8.26E-09 7.81E-09 7.39E-09 5.7 6.98E-09 6.60E-09 6.24E-09 5.89E-09 5.57E-09 5.26E-09 4.97E-09 4.70E-09 4.44E-09 4.19E-09 5.8 3.96E-09 3.74E-09 3.53E-09 3.34E-09 3.15E-09 2.97E-09 2.81E-09 2.65E-09 2.50E-09 2.36E-09 5.9 2.23E-09 2.11E-09 1.99E-09 1.88E-09 1.77E-09 1.67E-09 1.58E-09 1.49E-09 1.40E-09 1.32E-09 6.0 1.25E-09 1.18E-09 1.11E-09 1.05E-09 9.88E-10 9.31E-10 8.78E-10 8.28E-10 7.81E-10 7.36E-10 Z 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 This table represents the p-value for z= 3,0 to 6,09 DFSS Basic Staistics
27
EAB/JN Stefan Andresen
Capability CP Tolerance width divided by 6 times the standard deviation. A CP value greater than 2 is good (thumb rule) Tolerance width TÖ - TU CP = 6 Hur bra processen skulle kunna vara * 6 DFSS Basic Staistics
28
EAB/JN Stefan Andresen
Capability Cpk Difference between nearest tolerance limit and average, divided by 3 times the standard deviation. A Cpk value greater than 1,5 is good (thumb rule) TU TÖ Min(TÖ alt. TU) CPK = 3 Hur bra processen är * 3 DFSS Basic Staistics
29
EAB/JN Stefan Andresen
Continuous data and possible Pitfalls Can be divided in to two types of variation Common cause (e.g. within batch variation) Special cause -The shift between and (e.g. batch variation) -Outliers or non-rare occasions will appear and may ruin the analyze DFSS Basic Staistics
30
EAB/JN Stefan Andresen
„Shift Happens“ Short-Term Capabilities (within group variation) Time 1 (between group variation) Time 2 Time 3 Time 4 Key Messages: To this point we have been talking about process capability in a short-term sense. It has been demonstrated that means do shift over time. Process center shifts can result in defects though the process is capable. This shifting over time is an indication of the process’ long-term capability. It is important to reduce variation to provide for these process mean shifts. Your Notes: Long-Term Capability (all variation) LSL Target USL DFSS Basic Staistics
31
Z long term and Z short term
EAB/JN Stefan Andresen Z long term and Z short term The sample and the population sigma are often almost the same, but the average will probably differ. Therefore is zST (zB ) and shift & drift preferably used to estimate the “true” fault rate. Shift & Drift = Zshort term - Zlong term Ptot = 0,1% Zb = 3,12 Zlt =Zb-S&D = 3,14 -1,5 = 1,64 p = 0,0559 5,6% Calculate 133, 131, (132, 134) What will the long term fault rate be in exercise 5 with a S&D of 1.5? DFSS Basic Staistics
32
EAB/JN Stefan Andresen
ZB Lower Tolerance Limit Upper Tolerance Limit Ptot=Pupper+Plower ZB – From table with Ptot Rev C Peter Häyhänen 9805 DFSS Basic Staistics
33
Is Six Sigma corresponding to a defect level of 3,4ppm?
EAB/JN Stefan Andresen Is Six Sigma corresponding to a defect level of 3,4ppm? USL LSL ± 1.5s Short-term Short-term -6s -5s s s s s s s s s s s % or ppm % or 3.4 ppm Yes, with a S&D of 1,5!! DFSS Basic Staistics
34
EAB/JN Stefan Andresen
Shift & Drift Z short term in a typical process 4,02 (based on approx. 30 values). DFSS Basic Staistics
35
EAB/JN Stefan Andresen
Shift & Drift Z long term in a typical process 3,03 (measurments from one and a half year of production, “all values”) DFSS Basic Staistics
36
EAB/JN Stefan Andresen
Shift & Drift Poverall = 1200ppm Þ Z = 3,03s Psample = 29ppm Þ Z = 4,02s Shift & Drift = Zshort term - Zlong term Shift & Drift = 4,02s - 3,03s Shift & Drift = 0,99s DFSS Basic Staistics
37
Minitab Capability Output
EAB/JN Stefan Andresen Minitab Capability Output Above is an example of how Minitab can help you to calculate Zlt and Zst, although Minitab uses average for calculating both Zlt and Zst DFSS Basic Staistics
38
EAB/JN Stefan Andresen
Nomenclature dpmo - defects per million opportunities Yield - % of the number of approved units divided by the total number of units p(d) - probability for defects (1-Yield) Fty - First time yield, the yield when the units are tested for the first time TpY - Throughput yield, the yield in every unique process step Yrt - Yield rolled through, multiplied throughput yield DPU - Defects per units DPO - Defects per opportunity Opp - Opportunity, measurable opportunity for defect DFSS Basic Staistics
39
EAB/JN Stefan Andresen
Nomenclature Zst - Single side short term capability, calculated with the help of the target Zb - An estimate of the overall short term capability, used to calculate Zlt Zlt - A rating of the long term capability, normally based on S&D & Zb pl - Probability for defect beneath lower specification limit pu - Probability for defect above upper specification limit p - Summarized probability for defect, pl + pu S&D - An approximation of the drift in average, fundamentally 1,5 LSL - Lower specification limit USL - Upper specification limit DFSS Basic Staistics
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.