Presentation is loading. Please wait.

Presentation is loading. Please wait.

1 Neural Networks MUMT 611 Philippe Zaborowski April 2005.

Similar presentations


Presentation on theme: "1 Neural Networks MUMT 611 Philippe Zaborowski April 2005."— Presentation transcript:

1 1 Neural Networks MUMT 611 Philippe Zaborowski April 2005

2 2 Table Of Contents Background Examples Types of Neural Networks Applet

3 3 What are neural nets? A software model that tries to simulate the learning process “Inspired” by brain cells called neurons Unlike the human brain, neural nets have an unchangeable structure

4 4 The Neuron

5 5 The Artificial Neuron

6 6 Neuron Layers

7 7 Learning Process Supervised:  Input pattern => Target pattern  0001 => 001  0010 => 010 Unsupervised:  No target output  Selforganization

8 8 Example: Forwardpropagation Input Pattern => Target Pattern 01 => 0 11 => 1

9 9 Example: Forwardpropagation Input 1 of output neuron: 0 * 0.35 = 0 Input 2 of output neuron: 1 * 0.81 = 0.81 Add the inputs: 0 + 0.81 = 0.81 (= output) Error: 0 - 0.81 = -0.81 Value for changing weight 1: 0.25 * 0 * (-0.81) = 0 Value for changing weight 2: 0.25 * 1 * (-0.81) = 0.2025 Change weight 1: 0.35 + 0 = 0.35 (not changed) Change weight 2: 0.81 + (-0.2025) = 0.6075

10 10 Example: Forwardpropagation Input 1 of output neuron: 1 * 0.35 = 0.35 Input 2 of output neuron: 1 * 0.6075 = 0.6075 Add the inputs: 0.35 + 0.6075 = 0.9575 (= output) Error: 1 - 0.9575 = 0.0425 Value for changing weight 1: 0.25 * 1 * 0.0425 = 0.010625 Value for changing weight 2: 0.25 * 1 * 0.0425 = 0.010625 Change weight 1: 0.35 + 0.010625 = 0.360625 Change weight 2: 0.6075 + 0.010625 = 0.618125 Finally we compute net error for both operations:  (-0.81)2 + (0.0425)2 = 0.65790625

11 11 Applications Image processing Pattern classification Speech analysis Optimization problems Robot steering

12 12 Perceptron (Rosenblatt 58) Type: feedforward Layers:  1 input  1 output Input: binary Activation: hard limiter Learning method: supervised Learning algorithm: Hebb Use:  Simple logical operations  Pattern classification

13 13 Multi-Layer-Perceptron (Minsky 69) Type: feedforward Layers:  1 input  1 or more hidden  1 output Input: binary Activation: hard limiter/sigmoid Learning method: supervised Learning algorithm: backpropagation Use:  Complex logical operations  Pattern classification

14 14 Backpropagation (Hinton 86) Type: feedforward Layers:  1 input  1 or more hidden  1 output Input: binary Activation: sigmoid Learning method: supervised Learning algorithm: backpropagation Use:  Complex logical operations  Pattern classification  Speech analysis

15 15 Hopfield (Hopfield 82) Type: feedback Layers: 1 matrix Input: binary Activation: hard limiter/signum Learning method: unsupervised Learning algorithm:  Delta learning rule  Simulated annealing Use:  Pattern association  Optimization problems

16 16 Kohonen (Kohonen 82) Type: feedforward Layers:  1 input  1 map layer Input: binary or real Activation: sigmoid Learning method: unsupervised Learning algorithm:  self organization Use:  Pattern classification  Optimization problems  Simulation


Download ppt "1 Neural Networks MUMT 611 Philippe Zaborowski April 2005."

Similar presentations


Ads by Google