Download presentation
Presentation is loading. Please wait.
Published byGinger Manning Modified over 8 years ago
1
Differentiation – Continuous Functions
2
Forward Difference Approximation 2 f x Δx f x Δx lim Δx 0 f x For a finite 'Δx' (we can not use in this scheme Δx approaches 0) f x f x x f x x
3
f(x) xx+Δx Figure 1 Graphical Representation of forward difference approximation of first derivative. 3 Graphical Representation Of Forward Difference Approximation
4
Example 1 The velocity of a rocket is given by 4 4 4 14 10 9.8t,0 t 30 14 10 2100t t 2000 ln where ' ν' is given in m/s and 't' is given in seconds. a)Use forward difference approximation of the first derivative of ν t to calculate the acceleration a(t) at t 16s. Use a step size of Δt 2s. b)Find the exact value of the acceleration a(t) of the rocket. c)Calculate the absolute relative true error for part (b).
5
Example 1 Cont. Solution i 5http://numericalmethods.eng.usf.edu i tt a t t t i1i1 t i 16 Δt 2 t i 1 t i t 16 2 18 a 16 18 16 2 FDD approximation rule
6
Example 1 Cont. 9.8 18 6http://numericalmethods.eng.usf.edu 1818 4 4 14 10 2100 14 10 18 2000 ln 453.02m/s 9.8 16 4 14 10 4 2100 16 14 10 16 2000 ln 392.07m/s Hence a 16 18 16 2
7
Example 1 Cont. 453.02 392.07 2 30.474m/s 2 can be calculated by differentiating 4 14 10 4 2100t t 2000 ln 1410 9.8t as a t d ν t dt 7http://numericalmethods.eng.usf.edu b)The exact value of a 16
8
Example 1 Cont. Knowing that d ln t 1 dtt andand 2 dt t t d 1 1 4 4 9.8 14 10 14 10 4 4 4 102100 2100tdt14 10 t d a t 2000 14 2 4 2100 9.8 14 10 4 11 2000 14 10 2100t 14 10 4 2100t 200 3t 8http://numericalmethods.eng.usf.edu 4040 29.4t
9
Example 1 Cont. a 16 4040 29.4 16 200 3 16 29.674m/s 2 The absolute relative true error is True Value t True Value - Approximate Value x100 29.674 9http://numericalmethods.eng.usf.edu 29.674 30.474 x100 2.6967%
10
Backward Difference Approximation of the First Derivative We know f x Δx f x Δx lim Δx 0 f x For a finite 'Δx', f x f x x f x x If 'Δx' is chosen as a negative number, xx f x f x x f x ΔxΔx 10http://numericalmethods.eng.usf.edu f x f x Δx
11
Backward Difference Approximation of the First Derivative Cont. Thisisabackwarddifferenceapproximationasyouaretakingapoint backward from x. To find the value of f x at x x i, we may choose another x (i- 1) point 'Δx' behind x as.This gives i xx f x f x i f x i 1 x i x i 1 11http://numericalmethods.eng.usf.edu f x i f x i 1 xi1xi1 where Δx x i
12
x x-Δx x f(x)f(x) 12http://numericalmethods.eng.usf.edu Figure 2 Graphical Representation of backward difference approximation of first derivative Backward Difference Approximation of the First Derivative Cont.
13
Example 2 The velocity of a rocket is given by 4 13http://numericalmethods.eng.usf.edu 4 14 10 9.8t,0 t 30 14 10 2100t t 2000 ln where ' ν' is given in m/s and 't' is given in seconds. a)Use backward difference approximation of the first derivative of ν t to calculate the acceleration at t 16 s. Use a step size of Δt 2s. b)Find the absolute relative true error for part (a).
14
Example 2 Cont. tt 14http://numericalmethods.eng.usf.edu Solution a t t i t i 1 t i 16 Δt 2 t i 1 t i t 16 2 14 a 16 16 14 2
15
Example 2 Cont. 9.8 16 1616 4 4 14 10 2100 14 10 16 2000 ln 392.07m/s 9.8 14 1414 4 4 14 10 2100 14 10 14 2000 ln 334.24m/s a 16 16 14 2 392.07 334.24 15http://numericalmethods.eng.usf.edu 2 28.915m/s 2
16
Example 2 Cont. 29.674 16http://numericalmethods.eng.usf.edu t 29.674 28.915 x100 2.5584% from Example 1 is The exact value of the acceleration at t 16 s a 16 29.674m/s 2 The absolute relative true error is
17
Central Divided Difference Hence showing that we have obtained a more accurate formula as the error is of the order of 0Δx2.0Δx2. x f(x)f(x) x-Δxx-Δxxx+Δxxx+Δx Figure 3 Graphical Representation of central difference approximation of first derivative 17http://numericalmethods.eng.usf.edu
18
Example 3 The velocity of a rocket is given by 4 18http://numericalmethods.eng.usf.edu 4 14 10 9.8t,0 t 30 14 10 2100t t 2000 ln where ' ν' is given in m/s and 't' is given in seconds. (a)Use central divided difference approximation of the first derivative of ν t to calculate the acceleration at t 16s. Use a step size of Δt 2s. (b)Find the absolute relative true error for part (a).
19
Example 3 cont. Solution a t 2t2t i1i1i1i1 t t i t i 16 a 16 18 14 4 19http://numericalmethods.eng.usf.edu 2 2 18 14 t 2 t i 1 t i t 16 2 18 t i 1 t i t 16 2 14
20
Example 3 cont. 9.8 18 1818 4 4 14 10 2100 14 10 18 2000 ln 453.02m/s 9.8 14 1414 4 4 210014 10 14 2000 ln 334.24m/s a 16 18 14 4 453.02 334.24 20http://numericalmethods.eng.usf.edu 4 29.694m/s 2
21
Example 3 cont. 29.674 21http://numericalmethods.eng.usf.edu 29.674 29.694 100 t 0.069157% The exact value of the acceleration at t 16 s from Example 1 is a 16 29.674m/s 2 The absolute relative true error is
22
Comparision of FDD, BDD, CDD The results from the three difference approximations are given in Table 1. Table 1 Summary of a (16) using different divided difference approximations Type of Difference Approximation a 16 m / s 2 t % Forward Backward Central 30.475 28.915 29.695 2.6967 2.5584 0.069157 22http://numericalmethods.eng.usf.edu
23
Finite Difference Approximation of Higher Derivatives One can use Taylor series to approximate a higher order derivative. For example, to approximate f x , the Taylor series for 32 3!3!2!2! 2Δx 2Δx2Δx f x ii f x i 2 f x i f x i 2Δx where x i 2 x i 2Δx 3 23http://numericalmethods.eng.usf.edu 2 3!3!2!2! fx fx fx fx ii x x xx f x i 1 f x i f x i x where x i Δx xi1xi1
24
Finite Difference Approximation of Higher Derivatives Cont. Subtracting 2 times equation (4) from equation (3) gives f x i 2 2 f x i 1 f x i f x i Δx f x i Δx 23 f x f x f x i i i ΔxΔx f x 2 f x Δx2Δx2 i1i1i2i2 i 24http://numericalmethods.eng.usf.edu i Δx2Δx2 0Δx 0Δx f x f x 2 f x f x i1i1i2i2 (5)(5)
25
Example 4 The velocity of a rocket is given by 4 25http://numericalmethods.eng.usf.edu 4 14 10 9.8t,0 t 30 14 10 2100t t 2000 ln νt νt Use forward difference approximation of the second derivative of to calculate the jerk at t 16s. Use a step size of Δt 2s.
26
Example 4 Cont. Solution i 26http://numericalmethods.eng.usf.edu i t 2t 2 j t i1i1i2i2 t t 2 t 2222 j 16 20 2 18 16 t i 16 t 2 t i 1 t i t 16 2 18 t i 2 t i 2 t 16 2 2 20
27
Example 4 Cont. 9.8 20 4 4 14 10 2100 20 14 10 20 2000 ln 517.35m/s 9.8 18 1818 4 4 14 10 2100 14 10 18 2000 ln 453.02m / s 9.8 16 27http://numericalmethods.eng.usf.edu 1616 4 4 14 10 2100 14 10 16 2000 ln 392.07m/s
28
Example 4 Cont. j 16 517.35 2 453.02 392.07 4 0.84515m/s 3 The exact value of j16j16 can be calculated by differentiating 4 28http://numericalmethods.eng.usf.edu 4 9.8t 14 10 2100t 14 10 t 2000 ln twice as a t d ν t dt and j t d a t dt
29
Example 4 Cont. Knowing that d ln t 1 dtt and t 2t 2 dt t d 1 1 4 4 9.8 14 10 14 10 4 4 4 102100 2100tdt14 10 t d a t 2000 14 200 3t 4040 29.4t 2 29http://numericalmethods.eng.usf.edu 4 2100 9.8 14 10 4 1 1 2000 14 10 2100t 14 10 4 2100t
30
Example 4 Cont. 18000 dt j t d a t ( 200 3t) 2 18000 [ 200 3(16)] 2 j 16 0.77909m/s 3 The absolute relative true error is 0.77909 30http://numericalmethods.eng.usf.edu 0.77909 0.84515 100 t 8.4797 % Similarly it can be shown that
31
Higher order accuracy of higher order derivatives The formula given by equation (5) is a forward difference approximation of the second derivative and has the error of the order of Δx . Can we get a formula that has a better accuracy?We can get the central difference approximation of the second derivative. The Taylor series for 4 31http://numericalmethods.eng.usf.edu 32 4!4!3!3!2!2! fx fx fx fx fx fx iii x x xx xx f x f x f x x i 1i i where x i Δx xi1xi1 (6)(6)
32
Higher order accuracy of higher order derivatives Cont. 432 4!4!3!3!2!2! fx fx fx fx fx fx iii i x x xx xx f x f x f x x i1 ii1 i where x i 1 x i Δx (7)(7) Adding equations (6) and (7), gives 4 2 Δx 12 ii x fxx fx 2 f x i f x Δ f f xi1xi1xi1xi1 12 2 x Δx i i f x 2 f x f xf f x 2 f x f xf f x ii1Δx2ii1Δx2 i1i1 2 32http://numericalmethods.eng.usf.edu Δx2Δx2 i i 0Δx 0Δx f x 2 f x f xf x 2 f x f x f x i1i1i1i1
33
Example 5 The velocity of a rocket is given by 4 33http://numericalmethods.eng.usf.edu 4 14 10 9.8t,0 t 30 14 10 2100t t 2000 ln Use central difference approximation of second derivative of ν t to calculate the jerk at t 16s. Use a step size of Δt 2s.
34
Example 5 Cont. Solution 1 34http://numericalmethods.eng.usf.edu i t 2t 2 a t i i i1i1 t t t 2 i t i 16 2222 j 16 18 2 16 14 t 2 t i 1 t i t 16 2 18 t i 1 t i t 16 2 14
35
Example 5 Cont. 9.8 18 1818 4 4 14 10 2100 14 10 18 2000 ln 453.02m/s 9.8 16 1616 4 4 14 10 2100 14 10 16 2000 ln 392.07m/s 9.8 14 35http://numericalmethods.eng.usf.edu 1414 4 4 14 10 2100 14 10 14 2000 ln 334.24m/s
36
Example 5 Cont. 2222 j 16 18 2 16 14 4 453.02 2 392.07 334.24 0.77908 36http://numericalmethods.eng.usf.edu 0.77908 0.78 100 t 0.77969m/s 3 The absolute relative true error is 0.077992%
37
THE END http://numericalmethods.eng.usf.edu
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.