Download presentation
Presentation is loading. Please wait.
Published byAndrea Waters Modified over 8 years ago
1
Evaluation of face recognition techniques using PCA, wavelets and SVM Ergun Gumus, Niyazi Kilic, Ahmet Sertbas, Osman N. Ucan Expert Sysetems with Applications.2010 Elsevier Ltd. All rights reserved. 1 指導老師 : 鄭文昌 報告者 : 許祐松
2
Outline Introduction Feature extraction methods Classification methods Experiment results Conclusion Personal remark 2
3
1.Introduction 人臉偵測的應用在日常生活中越來越廣泛 ◦ 機場安全監控 ◦ 公司的門禁系統 ◦ 犯罪偵查 一般人臉偵測分成兩個步驟 ◦ 特徵抽取 Feature extraction ◦ 辨識 Classification 3
4
1.Introduction 4 DatasetFeature extractionClassificationFace recognition
5
1.Introduction Feature extraction ◦ 目的 : 特徵抽取用來縮小龐大的輸入資料 ◦ PCA ◦ Eigenfaces method ◦ Wavelet decomposer Classifier ◦ 目的 : 找出最有可能被注意到的特徵 ◦ SVM ◦ Nearest Distance criterion 5
6
2.Feature extraction methods Eigenfaces method Eigenfaces are a set of eigenvectors used in the computer vision problem of human face recognition. 6
7
2.Feature extraction methods Eigenfaces method We have N face images with m rows and m columns. represent images in column vectors. 1. 2. 7 Mean face image images in column vectors
8
2.Feature extraction methods Eigenfaces method 3. To avoid the complexity, choose C in (NXN) 4. 8 D 差值擺在一 起 C 共變異矩陣
9
2.Feature extraction methods Eigenfaces method 5. 6. 9 VEigenvector set veigenvectors UEigenface space WFeature vectors
10
2.Feature extraction methods Eigenfaces method 10
11
2.Feature extraction methods Wavelet transform method 11
12
2.Feature extraction methods Wavelet transform method 1. 2. 12 aapproximationvvertical hhorizontalddiagonal
13
3.Classification methods methods Support Vector Machines(SVM) method SVM is a classification method that aims to separate two data sets with maximum distance between them. 13
14
3.Classification methods methods Support Vector Machines(SVM) method 14
15
3.Classification methods methods Support Vector Machines(SVM) method 1. 2. 3. d:distence between support vectors 為同時滿足 2.3. 條件,使用 Lagrange function 15
16
3.Classification methods methods Support Vector Machines(SVM) method 4. 5. 16
17
3.Classification methods methods 17
18
3.Classification methods methods Support Vector Machines(SVM) method Polynomial Kernel Function: RBF Kernel Function: 18
19
3.Classification methods methods Nearest Distance criterion The training image with the minimum Dist(i) value is the most similar one to the test image. 19
20
4.Experimental results 20
21
4.Experimental results 21 1/(360) training images / test images
22
5.Conclusion Feature extraction methods: PCA, Wavelets Classification step: SVM(three types of kernels),nearest distance We obtained highest recognition rate as 98.1% with Wavelet SVM(Quadratic polynomial kernel) method. Male (89.38%) v.s. females(81.41%) 22
23
6.Personal remark Use different data sets. 95.3% ??? 23
24
Thanks for your attention. 24
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.