Download presentation
Presentation is loading. Please wait.
Published by饲 昌 Modified over 7 years ago
2
ارائه یک روش حل مبتنی بر استراتژی های تکاملی گروه بندی برای حل مسئله بسته بندی اقلام در ظروف
استاد راهنما : دکتر علی حسین زاده کاشان استاد مشاور : دکتر علی اکبر اکبری دانشجو: ژاله سلطانپور
3
فـهـرسـت مقدمه پیشینه تحقیق
روش حل پیشنهادی برای مسئله بسته بندی یک بعدی – 1BB روش حل پیشنهادی برای مسئله بسته بندی دو بعدی - 2BPP نتایج پیاده سازی روش حل پیشنهاداتی برای مطالعات آینده منابع پیشینه تحقیق 2 مقدمه پیشنهادات نتایج حل مساله روش حل پیشنهادی 1BPP روش حل پیشنهادی 2BPP منابع
4
مقدمه
5
تعريف: مسائل گروه بندي , طرح نمايش گروه بندي
اساساً هدف درمسائل گروهبندي، تفكيك يك مجموعه V از اشياء در قالب تعدادي زير مجموعه دو به دو ناسازگار است، بگونهاي كه: , بعبارت ديگر، در مسائل گروه بندي هدف تفكيك اعضاي مجموعه V در D گروه متفاوت است بگونهاي كه هر يك از اعضا دقيقاً در يك گروه قرار گيرد. طرح نمايش گروه بندي 2, 5 4, 1 گروه A گروه B 3 گروه C B A C B A : A B C بخش گروهها ≡ نمايش مبتني بر گروه يک نمونه جواب بخش اشياء پیشینه تحقیق 4 مقدمه پیشنهادات نتایج حل مساله روش حل پیشنهادی 1BPP روش حل پیشنهادی 2BPP منابع
6
چند نمونه ازمسائل گروه بندی
مسئله کوله پشتی مسئله رنگ آمیزی گراف مسئله زمانبندی ماشینهای موازی/غیرموازی مسئله بسته بندی اقلام در ظروف پیشینه تحقیق 5 مقدمه پیشنهادات نتایج حل مساله روش حل پیشنهادی 1BPP روش حل پیشنهادی 2BPP منابع
7
مثال 6 پیشینه تحقیق مقدمه پیشنهادات نتایج حل مساله
روش حل پیشنهادی 1BPP روش حل پیشنهادی 2BPP منابع
8
مسئله بسته بندی اقلام در ظروف
مسئله بسته بندي اقلام در ظروف(BPP) شامل تخصيص اشيا به ظروف است طوري كه مجموع وزن اشيا در يك ظرف از ظرفيت ظرف تجاوز نكند و در عين حال تعداد ظرفهاي استفاده شده حداقل گردد. مسئله BPP يك مسئله Np-Hard است. انواع مسئله بسته بندی اقلام در ظروف از لحاظ ابعاد اشیا یک بعدی دو بعدی سه بعدی پیشینه تحقیق 7 مقدمه پیشنهادات نتایج حل مساله روش حل پیشنهادی 1BPP روش حل پیشنهادی 2BPP منابع
9
مسئله بسته بندی اقلام در ظروف در حالت یک بعدی
n شئ و n ظرف داريم. ظرفيت ظرفها برابر c و وزن هر شئ برابر wj ميباشد.N={1,2,…,n} . تعريف مي كنيم: yi= xij= Min z= i=1 𝑛 y i 𝑗=1 𝑛 𝑤 𝑗 𝑥 𝑖𝑗 ≤𝑐. 𝑦 𝑖 , 𝑖∈𝑁 𝑖=1 𝑛 𝑥 𝑖𝑗 =1 , 𝑗∈𝑁 𝑦 𝑖 =0 𝑜𝑟 1 , 𝑖∈𝑁 𝑥 𝑖ℎ =0 𝑜𝑟 1 , 𝑖∈𝑁 , 𝑗∈𝑁 پیشینه تحقیق 8 مقدمه پیشنهادات نتایج حل مساله روش حل پیشنهادی 1BPP روش حل پیشنهادی 2BPP منابع
10
مسئله بسته بندی اقلام در ظروف در حالت دو بعدی
يك مجموعه n عضوي از اشياء مستطيل شكل j∊J={1,…,n} داريم كه عرض هر شئ را با wj و ارتفاع آن را با hj نشان ميدهيم. در مسئله دو بعدي بستهبندي اقلام در ظروف (2BP) ، تعداد محدودي ظرف يكسان با عرض W و ارتفاع H داريم، و هدف تخصيص همه اشياء به حداقل تعداد ظروف است پیشینه تحقیق 9 مقدمه پیشنهادات نتایج حل مساله روش حل پیشنهادی 1BPP روش حل پیشنهادی 2BPP منابع
11
مسئله بسته بندی اقلام در ظروف در حالت دو بعدی
2 3 4 1 پیشینه تحقیق 10 مقدمه پیشنهادات نتایج حل مساله روش حل پیشنهادی 1BPP روش حل پیشنهادی 2BPP منابع
12
مفروضات مسئله تعداد اشیا برابر n در نظر گرفته می شوند.
در مسئله یک بعدی هر شئ j دارای وزن wj می باشد. حداکثر ظرفیت همه ظروف برابر C می باشد. در مسئله دو بعدی عرض و ارتفاع هر شئ j با wj و hj نشان داده می شود. در حالت دو بعدی ، عرض و ارتفاع ظروف برابر W و H فرض می شود. هر شئ تنها در یک ظرف قرار می گیرد. در ابتدای حل مسئله یک ظرف داریم و در هر مرحله که نیاز به باز شدن ظرف جدیدی باشد ، یک ظرف اضافه می شود. در حالت دوبعدی چرخش اشیاء و ظروف مجاز نمی باشد. امکان تقسیم اشیاء به واحدهای کوچکتر وجود ندارد. اشیا دارای اولویت بندی خاصی نیستند و تنها می توان بر اساس وزن (عرض و ارتفاع) آنها را اولویت بندی کرد. ترتیب ظروف اهمیتی ندارد. پیشینه تحقیق 11 مقدمه پیشنهادات نتایج حل مساله روش حل پیشنهادی 1BPP روش حل پیشنهادی 2BPP منابع
13
اهداف تحقیق در این تحقیق، هدف معرفی یک الگوریتم مبتنی بر استراتژی تکاملی گروه بندی برای مسئله بستهبندی اقلام در ظروف و استفاده از روشهای مبتنی بر کاهش ابعاد برای ارتقای عملکرد الگوریتم معرفی شده می باشد. بر خلاف سایر روش های موجود، روش حل ارائه شده حتی الامکان مبتنی بر ویژگی های ساختاری مسئله طراحی شده و از دانش ساختاری مسئله بهره می برد. پیشینه تحقیق 12 مقدمه پیشنهادات نتایج حل مساله روش حل پیشنهادی 1BPP روش حل پیشنهادی 2BPP منابع
14
پیـشـینه تـحقیق
15
پیـشـینه تـحقیق نویسنده سال ویژگیهای اصلی 1991 معرفی رویه کاهشی MTRP
Martello& Toth 1991 معرفی رویه کاهشی MTRP Falkenauer 1994 ارائه الگوریتم ژنتیک گروه بندی Scholl, Klein, & Jurgens 1997 توسعه الگوریتم کارای BISON Gupta & Ho 1999 ارائه الگوریتم Minimum Bin Slack Quiroz-Castellanos et al 2015 حل مسئله بسته بندی اقلام در ظروف با الگوریتم ژنتیک با انتقال کنترل شده حسین زاده کاشان، اکبری،استادی ارائه نسخه گروه بندی استراتژی تکاملی پیشینه تحقیق 14 مقدمه پیشنهادات نتایج حل مساله روش حل پیشنهادی 1BPP روش حل پیشنهادی 2BPP منابع
16
پیـشـینه تـحقیق نویسنده سال ویژگیهای اصلی
Lodi,Martello & Vigo 1999 معرفي الگوريتم ابتكاري براي حل دو نوع از مسائل بسته بندي و استفاده ازرويكرد جستجوي تابوي يكپارچه براي كشف همسايگي Vigi,Monaci,Martello 2001 بحث روی مدلهای ریاضی، حدود پایین، الگوریتمهای تقریبی،ابتکاری وفراابتکاری برای مسئله بسته بندی اقلام دو بعدی و بسته بندی نواری 2004 ارائه مدل ILP . اين مقاله مبنایي براي ساير مدلهاي ILP است. David Pisinger & Sigurd 2005 حل مسئله BP دو بعدي با اندازه ظرفهاي متفاوت با استفاده از فرمولاسيون برنامه ريزي خطي عدد صحيح Wong & Lee 2009 ارائه الگوريتم ابتكاري LGFi و LGFior براي حل مسئله BP دو بعدي Blum & Schmid 2013 حل مسئله BP دو بعدي تحت برش گيوتيني با استفاده از يك الگوريتم تكاملي كه براي توليد جواب از هيورستيك randomized one-pass استفاده مي كند. پیشینه تحقیق 15 مقدمه پیشنهادات نتایج حل مساله روش حل پیشنهادی 1BPP روش حل پیشنهادی 2BPP منابع
17
روش حل پیشنهادی برای مسئله بسته بندی اقلام در ظروف در حالت یک بعدی 1BPP
18
توسعه نسخه گروه بندي الگوريتم هاي تکاملي
اگرچه ممکن است توسعه نسخه گروهبندي الگوريتمهايي نظير SA و يا TSساده به نظر رسد، اين امر در مورد الگوريتمهاي بهينه سازي اجتماع ذرات (PSO)، تکامل ديفرانسيلي (DE) و استراتژي هاي تکاملي (ES) ممکن است به دو دليل به سادگي امکانپذير نباشد. اين الگوريتمها داراي معادلات به روز رساني هستند که به توليد بردارهاي جواب در فضاي پيوسته ميپردازند. اين الگوريتمها همگي براي بهينهسازي توابع غيرخطي مشتق ناپذير در فضاي پيوسته توسعه يافتهاند در حاليکه مسائل گروهبندي نوعاً مسائلي گسسته هستند. پیشینه تحقیق 17 مقدمه پیشنهادات نتایج حل مساله روش حل پیشنهادی 1BPP روش حل پیشنهادی 2BPP منابع
19
نسخه گروه بندی استراتژی تکاملی ES
GES GES علاوه بر حفظ ویژگی های عمده ES متناسب با ساختار مسائل گروه بندی است. معادله جهش در GES به جای اعداد اسکالر با گروه ها کار می کند. طرح نمايش در GES همان طرح نمايش گروه بندي است. طبیعت گسسته استراتژی تکاملی گروه بندی، باعث می شود که این روش در مسائل گروه بندی و مسائل زمان بندی کاربردی باشد. 2, 5 4, 1 گروه A گروه B 3 گروه C B A C B A : A B C بخش گروهها ≡ نمايش مبتني بر گروه يک نمونه جواب بخش اشياء پیشینه تحقیق 18 مقدمه پیشنهادات نتایج حل مساله روش حل پیشنهادی 1BPP روش حل پیشنهادی 2BPP منابع
20
معادله جهش در استراتژی تکاملی گروهبندي (GES)
. . . معادله جهش در ES فرض کنيد G و G’ دو گروه باشند. با کميسازي درجه شباهت بين دو گروه، ميتوان دريافت که دو گروه تا چه حد به يکديگر شبيه و يا از يکديگر دور هستند. معادله جهش در GES پیشینه تحقیق 19 مقدمه پیشنهادات نتایج حل مساله روش حل پیشنهادی 1BPP روش حل پیشنهادی 2BPP منابع
21
معادله جهش در استراتژي هاي تکاملي گروه بندي(GES)
تعدادي از توابع چگالي احتمال مطلوب: توزيع مثلثي توزيع بتا توزيع کوماراسوامي توزيع بتا پیشینه تحقیق 20 مقدمه پیشنهادات نتایج حل مساله روش حل پیشنهادی 1BPP روش حل پیشنهادی 2BPP منابع
22
معادله جهش در استراتژي هاي تکاملي گروه بندي(GES)
J شکل 1 a b U شکل زنگي شکل پیشینه تحقیق 21 مقدمه پیشنهادات نتایج حل مساله روش حل پیشنهادی 1BPP روش حل پیشنهادی 2BPP منابع
23
استراتژی تکاملی گروه بندی (GES)
Initialize : maximum number of iterations , β , λ , 0< α ≤1 , α0 > 0 , αmin >0 , Ps ; Begin t ←0 ; Gs←0 ; α← α0 ; creat a feasible solution Xt and evaluate it ; while stopping criteria are not true for i=1 to λ given the parent solution Xt , apply NSG algorithm to obtain the offspring ; end for apply the comparison criteria Xt and the λ generated offspring to select the best individual , that is Xt+1 (in case of ties select at random) ; If f(Xt+1 ) < f(Xt) Gs ← Gs + 1 ; End if If (t mod G) = 0 α ← Gs ← 0; t ← t+1 , αt ← α ; End while End پیشینه تحقیق 22 مقدمه پیشنهادات نتایج حل مساله روش حل پیشنهادی 1BPP روش حل پیشنهادی 2BPP منابع
24
توليد يک جواب جديد پس از تولیدجواب اولیه در GES مرحله بعدی تولید 𝜆 جواب فرزند از جواب والد است که این مرحله توسط الگوریتم NSG انجام می گیرد. توليد يک جواب جديد در دو مرحله انجام ميپذيرد.: مرحله وراثت مرتبط با تصميمگيري در مورد آن است که چه قسمتي از جواب والد به جواب فرزند انتقال يابد. در طول اين مرحله ممکن است تعدادي از اشياء از جواب حذف شده باشند. در مرحله دوم که مرحله تخصيص مجدد است، اشياء مجدداً به گروههاي فعلي و يا گروههاي جديد بازگردانده ميشوند. پیشینه تحقیق 23 مقدمه پیشنهادات نتایج حل مساله روش حل پیشنهادی 1BPP روش حل پیشنهادی 2BPP منابع
25
رویه کاهشی MTRP تكنيك كاهشي MTRP مبتني بر معيار تسلط زير ميباشد:
با داشتن دو مجموعه شدني مجزاي F1 و F2، اگر يك تقسيمبندي از مجموعه F2 به زيرمجموعههاي P1,…,Pl و زيرمجموعه{j1,…,jl} از F1 طوری وجود داشته باشد كه (h=1,…,l), ، آنگاه F1 بر F2 مسلط است. 7 21 25 12 15 1 4 C=30 25 7 15 F1 21 4 12 1 4 Sum of weights=30 7 15 25 4 21 4 F2 1 12 Sum of weights=29 پیشینه تحقیق 24 مقدمه پیشنهادات نتایج حل مساله روش حل پیشنهادی 1BPP روش حل پیشنهادی 2BPP منابع
26
ترکیب GESو MTRP تولید جواب والد بوسیله روش ابتکاری سازنده جواب
تولید 𝜆جواب فرزند بوسیله الگوریتم NSG - فاز اول NSG : انتقالn شی از جواب والد به فرزند - فاز دوم NSG: تخصیص مجدد اشیای جدا شده مرحله قبل با استفاده از MTRP و روش ابتکاری سازنده جواب پیشینه تحقیق 25 مقدمه پیشنهادات نتایج حل مساله روش حل پیشنهادی 1BPP روش حل پیشنهادی 2BPP منابع
27
روش حل پیشنهادی برای مسئله بسته بندی اقلام در ظروف در حالت دو بعدی
28
روش حل پیشنهادی برای مسئله بسته بندی اقلام در ظروف در حالت دوبعدی
تولید جواب والد بوسیله روش ابتکاری پیشنهادی NFDW و BFDW تولید 𝜆 جواب فرزند بوسیله الگوریتم NSG - فاز اول NSG : انتقالn شی از جواب والد - فاز دوم NSG: مرتب سازی اشیا منتقل شده و تخصیص مجدد اشیای جدا شده مرحله قبل با استفاده از BFDW یا NFDW پیشینه تحقیق 27 مقدمه پیشنهادات نتایج حل مساله روش حل پیشنهادی 1BPP روش حل پیشنهادی 2BPP منابع
29
الگوریتم انطباق بعدی برحسب عرض نزولی
Next Fit Decreasing Width پیشینه تحقیق 28 مقدمه پیشنهادات نتایج حل مساله روش حل پیشنهادی 1BPP روش حل پیشنهادی 2BPP منابع
30
الگوریتم انطباق بعدی برحسب عرض نزولی NFDW
3 7 9 2 4 5 1 8 6 4 5 7 3 6 2 پیشینه تحقیق 29 مقدمه پیشنهادات نتایج حل مساله روش حل پیشنهادی 1BPP روش حل پیشنهادی 2BPP منابع
31
الگوریتم بهترین انطباق با ترتیب نزولی عرضها
Best Fit Decreasing Width الگوریتم بهترین انطباق با ترتیب نزولی عرضها پیشینه تحقیق 30 مقدمه پیشنهادات نتایج حل مساله روش حل پیشنهادی 1BPP روش حل پیشنهادی 2BPP منابع
32
الگوریتم بهترین انطباق برحسب عرض نزولی BFDW
3 9 2 4 6 5 7 1 8 پیشینه تحقیق 31 مقدمه پیشنهادات نتایج حل مساله روش حل پیشنهادی 1BPP روش حل پیشنهادی 2BPP منابع
33
انتخاب از بین NFDW و BFDW
نتیجه پیاده سازی NFDW و BFDW روی 50 نمونه مسئله نشان داد که روش BFDW جوابهای بهتری تولید می کند. لذا درحل مسائل با الگوریتم GES مورد استفاده قرار می گیرد. پیشینه تحقیق 32 مقدمه پیشنهادات نتایج حل مساله روش حل پیشنهادی 1BPP روش حل پیشنهادی 2BPP منابع
34
روش حل پیشنهادی برای مسئله بسته بندی اقلام در ظروف در حالت دوبعدی
تولید جواب والد بوسیله روش ابتکاری پیشنهادی NFDW و BFDW تولید جواب فرزند بوسیله الگوریتم NSG - فاز اول NSG : انتقالn شی از جواب والد - فاز دوم NSG: مرتب سازی اشیا منتقل شده و تخصیص مجدد اشیای جدا شده مرحله قبل با استفاده از BFDW یا NFDW مقایسه جوابهای والد و فرزندان و انتخاب بهترین جواب پیشینه تحقیق 33 مقدمه پیشنهادات نتایج حل مساله روش حل پیشنهادی 1BPP روش حل پیشنهادی 2BPP منابع
35
انتقال اشیا مشترک به فرزند
الگوریتم NSG انتقال اشیا مشترک به فرزند 1 8 2 3 4 7 5 6 9 2 4 2 7 4 7 3 9 مرتب سازی اشیا 5 1 6 8 تخصیص مجدد اشیا 9 3 5 1 6 8 پیشینه تحقیق 34 مقدمه پیشنهادات نتایج حل مساله روش حل پیشنهادی 1BPP روش حل پیشنهادی 2BPP منابع
36
نتایج حل مساله
37
نتیجه حل مسائل N1C1W 36 پیشینه تحقیق مقدمه پیشنهادات نتایج حل مساله
Time(sec) GES+MTRP BISON Problem Instance 29.48 25 N1C1W1-A 58.5 31 N1C1W1-B 38.4 20 N1C1W1-C 41.7 28 N1C1W1-D 44.3 26 N1C1W1-E 71.3 27 N1C1W1-F 64.7 N1C1W1-G 66.4 N1C1W1-H 65.6 N1C1W1-I 69.6 N1C1W1-J 55.21 35 N1C1W2-K 47.40 N1C1W2-L 43.42 30 N1C1W2-M 69.64 33 N1C1W2-N 45.7 29 N1C1W2-O 46.07 N1C1W2-P 77.43 36 N1C1W2-Q 59.5 34 N1C1W2-R 51.74 37 N1C1W2-S 49.89 38 N1C1W2-T 52.5 N1C1W4-A 50.6 N1C1W4-C 13.8 N1C1W4-E 13.2 N1C1W4-G 13.5 N1C1W4-I 41 N1C1W4-K 13.6 N1C1W4-M 14.5 N1C1W4-O 13.9 N1C1W4-Q 16.08 N1C1W4-S پیشینه تحقیق 36 مقدمه پیشنهادات نتایج حل مساله روش حل پیشنهادی 1BPP روش حل پیشنهادی 2BPP منابع
38
نتیجه حل مسائل N2C1W 37 پیشینه تحقیق مقدمه پیشنهادات نتایج حل مساله
Time(sec) GES with MTRP BISON Instance 17.3 48 N2C1W1-A 18.4 46 N2C1W1-C 19.5 58 N2C1W1-E 18.7 60 N2C1W1-G 17.6 62 N2C1W1-I 20.0 55 N2C1W1-K 17.8 N2C1W1-M 18.1 N2C1W1-O 19.2 N2C1W1-Q 19.0 45 N2C1W1-S 18.9 61 N2C1W2-B 19.3 74 N2C1W2-D 65 N2C1W2-F 19.4 70 N2C1W2-H 67 N2C1W2-J 18.2 N2C1W2-L 64 N2C1W2-N 68 N2C1W2-P 18.8 N2C1W2-R 66 N2C1W2-T 19.1 73 N2C1W4-A 77 N2C1W4-C 19.7 N2C1W4-E 71 N2C1W4-G 19.8 N2C1W4-I 20.1 N2C1W4-K 20.3 72 N2C1W4-M 20.2 80 N2C1W4-O 75 N2C1W4-Q 19.9 N2C1W4-S پیشینه تحقیق 37 مقدمه پیشنهادات نتایج حل مساله روش حل پیشنهادی 1BPP روش حل پیشنهادی 2BPP منابع
39
نتیجه حل مسائل N3C1W 38 پیشینه تحقیق مقدمه پیشنهادات نتایج حل مساله
Time(sec) GES with MTRP BISON instance 35.4 105 N3C1W1-A 35.6 99 N3C1W1-C 35.7 98 N3C1W1-E 36.1 111 N3C1W1-G 36.2 100 N3C1W1-I 35.9 102 N3C1W1-K 36.4 106 N3C1W1-M 36.7 N3C1W1-O 36.8 N3C1W1-Q 37.0 N3C1W1-S 37.1 125 N3C1W2-A 37.2 N3C1W2-C 132 N3C1W2-E 37.4 N3C1W2-G 37.5 126 N3C1W2-I 120 N3C1W2-K 136 N3C1W2-M 37.6 127 N3C1W2-O 37.8 135 N3C1W2-Q 37.7 130 N3C1W2-S 37.9 149 N3C1W4-A 146 N3C1W4-C 142 N3C1W4-E 148 N3C1W4-G 140 N3C1W4-I 147 N3C1W4-K N3C1W4-M 143 N3C1W4-O N3C1W4-Q 145 N3C1W4-S پیشینه تحقیق 38 مقدمه پیشنهادات نتایج حل مساله روش حل پیشنهادی 1BPP روش حل پیشنهادی 2BPP منابع
40
نتیجه حل مسائل Hard 39 پیشینه تحقیق مقدمه پیشنهادات نتایج حل مساله
Time(sec) GES with MTRP GGA M* INSTANCE 133.6 57 Hard1 136.7 56 Hard2 135.9 55 Hard3 138.1 58 Hard4 135.2 Hard5 134.4 Hard6 133.7 Hard7 132.1 Hard8 131.7 Hard9 139.9 Hard0 پیشینه تحقیق 39 مقدمه پیشنهادات نتایج حل مساله روش حل پیشنهادی 1BPP روش حل پیشنهادی 2BPP منابع
41
نتیجه حل نمونه مسائل دو بعدی - کلاس 1
H=10 , W=10 N=100 N=80 N=60 INSTANCE time GES Ub Lb 211 29 28 150 26 25 24 102 23 22 1 235 31 156 110 19 18 2 227 30 167 27 113 21 3 231 169 114 4 236 33 32 171 116 5 38 37 168 115 17 6 172 117 16 15 7 170 8 239 173 9 241 112 10 پیشینه تحقیق 40 مقدمه پیشنهادات نتایج حل مساله روش حل پیشنهادی 1BPP روش حل پیشنهادی 2BPP منابع
42
نتایج حل نمونه مسائل دو بعدی -کلاس 6
H=300 , W=300 N=100 N=80 N=60 INSTANCE time GES Ub Lb 126 3 104 89 2 1 125 4 88 128 105 87 127 103 5 6 130 106 86 7 8 107 90 9 124 102 10 پیشینه تحقیق 41 مقدمه پیشنهادات نتایج حل مساله روش حل پیشنهادی 1BPP روش حل پیشنهادی 2BPP منابع
43
نتایج اجرای نمونه مسائل دو بعدی- کلاس 10
H=100 , W=100 N=100 N=80 N=60 INSTANCE time GES Ub Lb 184 16 15 14 145 13 12 161 11 1 191 17 150 10 140 2 197 153 158 3 205 18 160 8 7 4 210 19 152 5 195 146 6 192 151 157 138 156 198 147 9 196 148 پیشینه تحقیق 42 مقدمه پیشنهادات نتایج حل مساله روش حل پیشنهادی 1BPP روش حل پیشنهادی 2BPP منابع
44
نتایج مقایسه حدود بالا و پایین و جواب GES
مسائل دو بعدی کلا س 9– نمونه مسائل دارای 100 شی پیشینه تحقیق 43 مقدمه پیشنهادات نتایج حل مساله روش حل پیشنهادی 1BPP روش حل پیشنهادی 2BPP منابع
45
نتایج مقایسه حدود بالا و پایین و جواب GES
مسائل دو بعدی کلاس 10 – نمونه های دارای 100 شئ پیشینه تحقیق 44 مقدمه پیشنهادات نتایج حل مساله روش حل پیشنهادی 1BPP روش حل پیشنهادی 2BPP منابع
46
نتیجه گیری ترکیب روش کاهشی و استراتژی تکاملی گروهبندی، از کارایی خوبی برخوردار است، در 720 نمونه مسئله بررسی شده، روش ترکیبی به جواب بهینه دست یافته است و در 10 نمونه مسئله سخت موجود در ادبیات، در 7 مسئله به جواب بهینه دست یافت و در مقایسه با GGA، برای 3 مسئله جواب بهتری حاصل شد. در خصوص مسئله بسته بندی اقلام در ظروف در حالت دوبعدی، الگوریتم برای مسائل کوچک تا متوسط کارایی بسیار خوبی داشته و با حدود پایین تعریف شده در ادبیات موضوع، برابری دارد. برای مسائل با اندازه 60 شئ , 80% نمونه ها نتایج برابر حدود پایین بوده است. در رابطه با مسائل بزرگ، برای 100 مسئله با اندازه 80 شئ، 60% جوابها بهینه بوده و 40% دارای اختلاف 0.04 درصدی با جواب بهینه هستند. وبرای 100 مسئله نمونه با اندازه نمونه 100 شئ، در 50% جواب بهینه حاصل شده و در 50 درصد اختلاف میانگین 0.04 درصد با جواب وجود داشته است. پیشینه تحقیق 45 مقدمه پیشنهادات نتایج حل مساله روش حل پیشنهادی 1BPP روش حل پیشنهادی 2BPP منابع
47
پیشنهاداتی برای مطالعات آینده
48
پیشنهادات آتی با توجه به کاربردی بودن مسائل گروه بندی پیشنهادات زیر برای تحقیقات آتی ارائه میگردد: نسخه گروه بندی استراتژی تکاملی را می توان برای مسئله بسته بندی اقلام در ظروف در حالت سه بعدی نیز گسترش داد. در این تحقیق ظروف مورد استفاده یکسان و هم اندازه بوده و چرخش اشیا مجاز نمی باشد، برای حل مسئله بسته بندی اقلام در ظروف دو بعدی با الگوریتم تکاملی گروه بندی، می توان فرضیاتی مانند مجاز بودن چرخش اشیا و یکسان نبودن ظرفها را نیز به مسئله اضافه نمود. در این تحقیق در حالت دو بعدی اشیا دارای شکل مستطیلی می باشند، می توان به منظور حل بسیاری از مسائل دنیای واقعی، فرض یکسان نبودن شکل اشیا را نیز در نظر گرفته و به حل این مسئله با الگوریتم تکاملی گروه بندی پرداخت. همچنین ترکیب استراتژی تکاملی گروه بندی با سایر روشهای کاهشی و یا با رویه های تعیین کننده حدود بالا و پایین مسئله، می تواند زمینه تحقیق مناسبی باشد. پیشینه تحقیق 47 مقدمه پیشنهادات نتایج حل مساله روش حل پیشنهادی 1BPP روش حل پیشنهادی 2BPP منابع
49
پیشنهادات آتی به دلیل گستردگی مسائل گروه بندی می توان الگوریتم تکاملی گروه بندی را برای سایر مسائل گروه بندی مانند مسئله رنگ آمیزی گراف نیز پیاده سازی نمود. همچنین به منظور بهبود جواب های الگوریتم تکاملی گروه بندی برای مسئله دو بعدی بزرگ، امید می رود که اعمال پاره ای تغییرات موجب بهبود کیفیت جواب حاصله گردد. از جمله می توان به انتخاب اشیا در فاز جداسازی اشیا بر اساس نسبت طول به عرض اشیا، یا بر اساس مساحت آنها اشاره کرد. در حال حاضر فرایند انتخاب اشیا جدا شونده از ظروف، به صورت تصادفی می باشد. توسعه دیگر الگوریتمهای ابتکاری سازنده جواب نیز می تواند موجب بهبود کیفیت جوابهای حاصله گردد. پیشینه تحقیق 48 مقدمه پیشنهادات نتایج حل مساله روش حل پیشنهادی 1BPP روش حل پیشنهادی 2BPP منابع
50
منابع و مراجع
51
منابع ومراجع 50 پیشینه تحقیق مقدمه پیشنهادات نتایج حل مساله
Alvim, A. F., Ribeiro, C., Glover, F., & Aloise, D. (2004). A Hybrid Improvement Heuristic for the One-Dimensional Bin Packing Problem. Journal of Heuristics, 10(2), doi: /B:HEUR ed Baker, B. S., Coffman, E. G., & Rivest, R. L. (1980). Orthogonal Packings in Two Dimensions. SIAM Journal on Computing, 9(4), doi: doi: / Berkey, J., & Wang, P. (1987). Two-dimensional finite bin-packing algorithms. Journal of the operational research society, Blum, C., & Schmid, V. (2013). Solving the 2D Bin Packing Problem by Means of a Hybrid Evolutionary Algorithm. Procedia Computer Science, 18(0), doi: Boschetti, M., & Mingozzi, A. (2003). The Two-Dimensional Finite Bin Packing Problem. Part II: New lower and upper bounds. Quarterly Journal of the Belgian, French and Italian Operations Research Societies, 1(2), doi: /s y Chung, F. R. K., Garey, M. R., & Johnson, D. S. (1982). On Packing Two-Dimensional Bins. SIAM Journal on Algebraic Discrete Methods, 3(1), doi: doi: / Coffman, E. G., Garey, M. R., Johnson, D. S., & Tarjan, R. E. (1980). Performance Bounds for Level-Oriented Two-Dimensional Packing Algorithms. SIAM Journal on Computing, 9(4), doi: doi: / Darwin, C. (1859). The Origin of Species. London: Oxford UP. Ding, H., El-Keib, A. A., & Smith, R. E. (1992). Optimal Clustering of Power Networks Using Genetic Algorithms. University of Alabama, Eilon , S., & Christofides , N. (1971). The Loading Problem. Management Science, 17, Falkenauer, E. (1994a). A New Representation and Operators for GAs Applied to Grouping Problems. Evol Comput, 2, Falkenauer, E. (1994b). Setting new limits in bin packing with a grouping GA using reduction: CRIF Technical Report. Falkenauer, E. (1996). A hybrid grouping genetic algorithm for bin packing. Journal of Heuristics, 2(1), doi: /BF Falkenauer, E., & Delchambre, A. (1992, May 1992). A genetic algorithm for bin packing and line balancing. Paper presented at the Robotics and Automation, Proceedings., 1992 IEEE International Conference on. Faroe, O., Pisinger, D., & Zachariasen, M. (2003). Guided Local Search for the Three-Dimensional Bin-Packing Problem. INFORMS Journal on Computing, 15(3), doi: doi: /ijoc Fleszar, K., & Hindi, K. S. (2002). New heuristics for one-dimensional bin-packing. Computers & Operations Research, 29(7), doi: Frenk, J. B. G., & Galambos, G. (1987). Hybrid next-fit algorithm for the two-dimensional rectangle bin-packing problem. Computing, 39(3), doi: /BF Garey, M. R., & Johnson, D. S. (1979). Computers and Intractability , A Guide to the Theory of NP-completeness: W.H.Freeman. Gilmore, P., & Gomory, R. E. (1965). Multistage cutting stock problems of two and more dimensions. Operations research, 13(1), Gilmore, P. C., & Gomory, R. E. (1961). A linear programming approach to the cutting-stock problem. Operations research, 9(6), پیشینه تحقیق 50 مقدمه پیشنهادات نتایج حل مساله روش حل پیشنهادی 1BPP روش حل پیشنهادی 2BPP منابع
52
منابع ومراجع 51 پیشینه تحقیق مقدمه پیشنهادات نتایج حل مساله
Holland, J. H. (1975). Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control, and artificial intelligence. Oxford, England: U Michigan Press. Hung, M. S., & Brown, J. R. (1978). An algorithm for a class of loading problems. Naval Research Logistics Quarterly, 25(2), doi: /nav Husseinzadeh Kashan, A., Husseinzadeh Kashan, M., & Karimiyan, S. (2013). A particle swarm optimizer for grouping problems. Information Sciences, 252, doi: J. Puchinger, J., G.R. Raidl, G. R., & Koller, G. (2004). Solving a real-world glass cutting problem, in: Evolutionary Computation in Combinatorial Optimization—EvoCOP 2004, in: J. Gottlieb, G.R. Raidl (Eds.). LNCS, 3004, 162–173. Jones, D. R., & Beltramo, M. A. (1991). Solving Partitioning Problems with Genetic Algorithms. Paper presented at the ICGA. Kashan, A. H., Akbari, A. A., & Ostadi, B. (2015). Grouping evolution strategies: An effective approach for grouping problems. Applied Mathematical Modelling, 39(9), doi: Kashan, A. H., Jenabi, M., & Kashan, M. H. (2009). A new solution approach for grouping problems based on evolution strategies. Paper presented at the Soft Computing and Pattern Recognition, SOCPAR'09. International Conference of. Khuri, S., Schütz, M., & Heitkötter, J. (1995). Evolutionary Heuristics for the Bin Packing Problem Artificial Neural Nets and Genetic Algorithms (pp ): Springer Vienna. Levine, J., & Ducatelle, F. (2004). Ant colony optimization and local search for bin packing and cutting stock problems. J Oper Res Soc, 55(7), Lewis, R. (2009). A General-purpose hill-climbing method for order independant minimum grouping problems : A Case study in graph coloring and bin packing. Computers & Operations Research, 36, Lodi, A., Martello, S., & Monaci, M. (2002). Two-dimensional packing problems: A survey. European Journal of Operational Research, 141(2), doi: Lodi, A., Martello, S., & Vigo, D. (1999a). Approximation algorithms for the oriented two-dimensional bin packing problem. European Journal of Operational Research, 112(1), doi: Lodi, A., Martello, S., & Vigo, D. (1999b). Heuristic and Metaheuristic Approaches for a Class of Two-Dimensional Bin Packing Problems. INFORMS Journal on Computing, 11(4), doi: doi: /ijoc Lodi, A., Martello, S., & Vigo, D. (1999c). Heuristic and metaheuristic approaches for a class of two-dimensional bin packing problems. INFORMS Journal on Computing, 11, Lodi, A., Martello, S., & Vigo, D. (2002). Recent advances on two-dimensional bin packing problems. Discrete Applied Mathematics, 123(1–3), doi: Lodi, A., Martello, S., & Vigo, D. (2004). Models and Bounds for Two-Dimensional Level Packing Problems. Journal of Combinatorial Optimization, 8(3), doi: /B:JOCO Loh, K.-H., Golden, B., & Wasil, E. (2009). A Weight Annealing Algorithm for Solving Two-dimensional Bin Packing Problems. In J. Chinneck, B. Kristjansson & M. Saltzman (Eds.), Operations Research and Cyber-Infrastructure (Vol. 47, pp ): Springer US پیشینه تحقیق 51 مقدمه پیشنهادات نتایج حل مساله روش حل پیشنهادی 1BPP روش حل پیشنهادی 2BPP منابع
53
منابع ومراجع 52 پیشینه تحقیق مقدمه پیشنهادات نتایج حل مساله
M.R.Garey, & D.S.Johnson. (1979). Computers and Intractability , A Guide to the Theory of NP-completeness: W.H.Freeman. Martello, S., & Toth, P. (1989). An exact algorithm for the bin packing problem. EURO X, Beograd. Martello, S., & Toth, P. (1990). An exact algorithm for large unbounded knapsack problems. Operations Research Letters, 9(1), doi: Martello, S., & Toth, P. (1990). Lower bounds and reduction procedures for the bin packing problem. Discrete Applied Mathematics, 28(1), doi: Martello, S., & Vigo, D. (1998). Exact Solution of the Two-Dimensional Finite Bin Packing Problem. Management Science, 44(3), doi: doi: /mnsc Monaci , M., & Toth , P. (2006). A Set-Covering-Based Heuristic Approach for Bin-Packing Problems. INFORMS Journal on Computing, 18(1), doi: doi: /ijoc Oliveira, J., & Ferreira, J. (1994). A faster variant of the Gilmore and Gomory technique for cutting stock problems. JORBEL–Belgium Journal of Operations Research, Statistics and Computer Science, 34(1), P.C. Gilmore, R. E. G. (1961). A linear programming approach to the cutting stock problem. Operation Research, 9, 849–859. P.C. Gilmore, R. E. G. (1963). A linear programming approach to the cutting stock problem—part II, . Operation Research, 11, 863–888. P.C. Gilmore, R. E. G. (1965). Multistage cutting problems of two and more dimensions. 13 Parreño, F., Alvarez-Valdes, R., Oliveira, J. F., & Tamarit, J. M. (2010). A hybrid GRASP/VND algorithm for two- and three-dimensional bin packing. Annals of Operations Research, 179(1), doi: /s Pisinger, D., & Sigurd, M. (2005). The two-dimensional bin packing problem with variable bin sizes and costs. Discrete Optimization, 2(2), Pisinger, D., & Sigurd, M. M. (2006). Using decomposition techniques and constraint programming for solving the two-dimensional bin packing problem. INFORMS Journal on Computing. Puchinger, J., & Raidl, G. R. (2007). Models and algorithms for three-stage two-dimensional bin packing. European Journal of Operational Research, 183(3), doi: Quiroz-Castellanos, M., Cruz-Reyes, L., Torres-Jimenez, J., Gómez S, C., Huacuja, H. J. F., & Alvim, A. C. F. (2015). A grouping genetic algorithm with controlled gene transmission for the bin packing problem. Computers & Operations Research, 55(0), doi: Reeves, C. (1996). Hybrid genetic algorithms for bin-packing and related problems. Annals of Operations Research, 63(3), doi: /BF S.Martello, & P.Toth. (1991). Knapsack Problems: Algorithms and Computer Implementations: Wiley. Sami Khuri, T. W., Yantisogono. (2000). A Grouping Genetic algorithm for coloring the edge of graphs. Proceedings of the ACM/SIGAP Symposium on Applied Computing, پیشینه تحقیق 52 مقدمه پیشنهادات نتایج حل مساله روش حل پیشنهادی 1BPP روش حل پیشنهادی 2BPP منابع
54
منابع ومراجع 53 پیشینه تحقیق مقدمه پیشنهادات نتایج حل مساله
Scholl, A., Klein, R., & Jürgens, C. (1997). Bison: A fast hybrid procedure for exactly solving the one-dimensional bin packing problem. Computers & Operations Research, 24(7), doi: Schwerin, P. a. G. W. (1997). A problem generator and some numerical experiments with FFD packing and MTP. International Transactions in Operational Research 4, Sigurd, M. M. (2004). Column generation methods and application. ( Ph.D. thesis), University of Copenhagen, Denmark. Singh, A., & Gupta, A. (2007). Two heuristics for the one-dimensional bin-packing problem. OR Spectrum, 29(4), doi: /s Stawowy, A. (2008). Evolutionary based heuristic for bin packing problem. Computers & Industrial Engineering, 55(2), doi: Valério de Carvalho, J. M. (1999). Exact solution of bin‐packing problems using column generation and branch‐and‐bound. Annals of Operations Research, 86(0), doi: /A: Van Driessche, R., & R., P. (1992). Load Balancing with Genetic Algorithms: Männer and Manderick. Vanderbeck, F. (1998). A nested decomposition approach to a 3-stage 2-dimensional cutting stock problem. Management Science 47(2), 864–879. Vanderbeck, F. (1999). Computational study of a column generation algorithm for bin packing and cutting stock problems. Mathematical Programming, 86(3), doi: /s Wong, L., & Lee, L. S. (2009). Heuristic placement routines for two-dimensional bin packing problem. Journal of Mathematics and Statistics, 5(4), 334 پیشینه تحقیق 53 مقدمه پیشنهادات نتایج حل مساله روش حل پیشنهادی 1BPP روش حل پیشنهادی 2BPP منابع
55
با تشکر از توجه شما
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.