Presentation is loading. Please wait.

Presentation is loading. Please wait.

Spatial Econometric Analysis 3 Kuan-Pin Lin Portland State University.

Similar presentations


Presentation on theme: "Spatial Econometric Analysis 3 Kuan-Pin Lin Portland State University."— Presentation transcript:

1 Spatial Econometric Analysis 3 Kuan-Pin Lin Portland State University

2 Model Estimation Spatial Lag Model SPLAG(1) OLS is biased and inconsistent.

3 Spatial Lag Model IV or 2SLS Estimation Instrumental Variables Two-Stage Least Squares

4 Spatial Lag Model IV/2SLS with SHAC

5 Spatial Lag Model GMM Estimation Strong Exogeneity of Instrumental Variables Generalized Method of Moments (GMM)

6 Spatial Lag Model GMM Estimation Efficient GMM Estimator

7 Spatial Lag Model Maximum Likelihood Estimation Normal Density Function

8 Spatial Lag Model Maximum Likelihood Estimation Jacobian Matrix

9 Spatial Lag Model Maximum Likelihood Estimation Log-Likelihood Function

10 Spatial Lag Model Maximum Likelihood Estimation Quasi Maximum Likelihood (QML) Estimator

11 Crime Equation Anselin (1988) Spatial Lag Model (Crime Rate) =  +  (Family Income) +  (Housing Value) +  W (Crime Rate) +  OLS vs. IV Estimator OLS Parameter OLS s.e. IV Parameter IV s.e 0.557330.150290.454560.17440  -0.865840.35541-1.00070.36786  -0.263850.09136-0.26550.08802  38.1819.215343.79410.496 R2R2 0.65720.6536

12 Crime Equation Anselin (1988) Spatial Lag Model (Crime Rate) =  +  (Family Income) +  (Housing Value) +  W (Crime Rate) +  IV with SHAC Estimator IV Parameter IV s.e IV s.e./hc IV s.e/hac 0.454560.174400.142590.17428  -1.00070.367860.456300.48617  -0.26550.088020.173740.17306  43.79410.4967.75798.2884 R2R2 0.6536

13 Crime Equation Anselin (1988) Spatial Lag Model (Crime Rate) =  +  (Family Income) +  (Housing Value) +  W (Crime Rate) +  GMM Estimator GMM-hc Parameter GMM-hc s.e GMM-hac Parameter GMM-hac s.e 0.420170.129620.420230.13177  -1.18910.42062-0.976830.40565  -0.216250.15437-0.274280.14808  46.2567.066844.9226.9797 R2R2 0.64740.6504

14 Crime Equation Anselin (1988) Spatial Lag Model (Crime Rate) =  +  (Family Income) +  (Housing Value) +  W (Crime Rate) +  QML vs. GMM Estimator QML Parameter QML s.e GMM-hac Parameter GMM-hac s.e 0.431010.129620.420230.13177  -1.03160.42108-0.976830.40565  -0.265930.17309-0.274280.14808  45.0806.405144.9226.9797 L-182.39-181.1

15 References Kelejian , H. , and I. R. Prucha , 1999. A Generalized Moments Estimator for the Autoregressive Parameter in a Spatial Model. International Economic Review 40 , 509-533. Kelejian, H., and I. R. Prucha, 2009. Specification and Estimation of Spatial Autoregressive Models with Autoregressive and Heteroskedastic Disturbances. Journal of Econometrics, forthcoming. Lee , L. F. , 2004. Asymptotic Distributions of Maximum Likelihood Estimators for Spatial Autoregressive Models. Econometrica, 72, 1899-1925.


Download ppt "Spatial Econometric Analysis 3 Kuan-Pin Lin Portland State University."

Similar presentations


Ads by Google