Download presentation
Presentation is loading. Please wait.
Published byRandell Oliver Modified over 8 years ago
1
Algebra 1 Notes: Lesson 1-4: Identity and Equality Properties
2
Vocabulary -Additive Identity
3
Vocabulary -Additive Identity a + 0 = a 0 is the additive identity -Multiplicative Identity
4
Vocabulary -Additive Identity a + 0 = a -Multiplicative Identityb · 1 = b 1 is the multiplicative identity - Multiplicative Property of Zero
5
Vocabulary -Additive Identity a + 0 = a -Multiplicative Identityb · 1 = b -Multiplicative Property of Zero c · 0 = 0 -Multiplicative Inverses
6
Vocabulary -Additive Identity a + 0 = a -Multiplicative Identityb · 1 = b -Multiplicative Property of Zero c · 0 = 0 -Multiplicative Inverses ¼ · 4 = 1 “Reciprocal”
7
Vocabulary -Reflexive Property of Equality
8
Vocabulary -Reflexive Property of Equality a = a
9
Vocabulary -Reflexive Property of Equality a = a 2 + 3 = 2 + 3 -Symmetric Property of Equality
10
Vocabulary -Reflexive Property of Equality a = a 2 + 3 = 2 + 3 -Symmetric Property of Equality If a = b, then b = a.
11
Vocabulary -Reflexive Property of Equality a = a 2 + 3 = 2 + 3 -Symmetric Property of Equality If a = b, then b = a. If 3 + 6 = 9, then 9 = 3 + 6.
12
Vocabulary -Transitive Property of Equality
13
Vocabulary -Transitive Property of Equality If a = b and b = c, then a = c.
14
Vocabulary -Transitive Property of Equality If a = b and b = c, then a = c. If 5 + 7 = 12 and 12 = 8 + 4, then 5 + 7 = 8 + 4. -Substitution Property of Equality
15
Vocabulary -Transitive Property of Equality If a = b and b = c, then a = c. If 5 + 7 = 12 and 12 = 8 + 4, then 5 + 7 = 8 + 4. -Substitution Property of Equality If a = b, then a may be replaced by b.
16
Vocabulary -Transitive Property of Equality If a = b and b = c, then a = c. If 5 + 7 = 12 and 12 = 8 + 4, then 5 + 7 = 8 + 4. -Substitution Property of Equality If a = b, then a may be replaced by b. If n = 15, then 3n = 3 · 15.
17
Example 1 Name the property used in each equation. Then find the value of n. a) n 12 = 0
18
Example 1 Name the property used in each equation. Then find the value of n. a) n 12 = 0 n = 0
19
Example 1 Name the property used in each equation. Then find the value of n. a) n 12 = 0 n = 0 Multiplicative Property of Zero b)
20
Example 1 Name the property used in each equation. Then find the value of n. a) n 12 = 0 n = 0 Multiplicative Property of Zero b) n = 5
21
Example 1 Name the property used in each equation. Then find the value of n. a) n 12 = 0 n = 0 Multiplicative Property of Zero b) n = 5 Multiplicative Inverse Property
22
Example 2 Evaluate: ¼(12 - 8) + 3(15 5 - 2) Name the property used in each step.
23
Example 2 ¼(12 - 8) + 3(15 5 – 2)
24
Example 2 ¼(12 - 8) + 3(15 5 – 2) ¼(4) + 3(15 ÷ 5 – 2) Substitution
25
Example 2 ¼(12 - 8) + 3(15 5 – 2) ¼(4) + 3(15 ÷ 5 – 2) Substitution
26
Example 2 ¼(12 - 8) + 3(15 5 – 2) ¼(4) + 3(15 ÷ 5 – 2) ¼(4) + 3(3 – 2) Substitution
27
Example 2 ¼(12 - 8) + 3(15 5 – 2) ¼(4) + 3(15 ÷ 5 – 2) ¼(4) + 3(3 – 2) Substitution
28
Example 2 ¼(12 - 8) + 3(15 5 – 2) ¼(4) + 3(15 ÷ 5 – 2) ¼(4) + 3(3 – 2) ¼(4) + 3(1) Substitution
29
Example 2 ¼(12 - 8) + 3(15 5 – 2) ¼(4) + 3(15 ÷ 5 – 2) ¼(4) + 3(3 – 2) ¼(4) + 3(1) Substitution
30
Example 2 ¼(12 - 8) + 3(15 5 – 2) ¼(4) + 3(15 ÷ 5 – 2) ¼(4) + 3(3 – 2) ¼(4) + 3(1) 1 + 3(1) Substitution Multiplicative Inverse
31
Example 2 ¼(12 - 8) + 3(15 5 – 2) ¼(4) + 3(15 ÷ 5 – 2) ¼(4) + 3(3 – 2) ¼(4) + 3(1) 1 + 3(1) Substitution Multiplicative Inverse
32
Example 2 ¼(12 - 8) + 3(15 5 – 2) ¼(4) + 3(15 ÷ 5 – 2) ¼(4) + 3(3 – 2) ¼(4) + 3(1) 1 + 3(1) 1 + 3 Substitution Multiplicative Inverse Multiplicative Identity
33
Example 2 ¼(12 - 8) + 3(15 5 – 2) ¼(4) + 3(15 ÷ 5 – 2) ¼(4) + 3(3 – 2) ¼(4) + 3(1) 1 + 3(1) 1 + 3 Substitution Multiplicative Inverse Multiplicative Identity
34
Example 2 ¼(12 - 8) + 3(15 5 – 2) ¼(4) + 3(15 ÷ 5 – 2) ¼(4) + 3(3 – 2) ¼(4) + 3(1) 1 + 3(1) 1 + 3 4 Substitution Multiplicative Inverse Multiplicative Identity Substitution
35
Example 2 ¼(12 - 8) + 3(15 5 – 2) ¼(4) + 3(15 ÷ 5 – 2) ¼(4) + 3(3 – 2) ¼(4) + 3(1) 1 + 3(1) 1 + 3 4 Substitution Multiplicative Inverse Multiplicative Identity Substitution
36
Try on your own! Include the property with each step 2 ( 3 2 – 5 ) + 3 ⅓
37
Assignment Pgs. 23-25 12-28 (evens) 39 – 43 (all)
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.