Download presentation
Presentation is loading. Please wait.
Published byBelinda Rice Modified over 8 years ago
1
The MATH and the Vernier System at Faculty of Aeronautics Štefan Berežný, Kristína Budajová, Eva Komová, Henrich Glaser-Opitz TECHNICAL UNIVERSITY IN KOŠICE Faculty of Aeronautics
2
What is the MATH? Š. Berežný, K. Budajová, E. Komová, H. Glaser-Opitz 20162 The MATH is the software application Open-source For Numerical calculations https://sites.google.com/site/mathnumapp/
3
Architecture and design Š. Berežný, K. Budajová, E. Komová, H. Glaser-Opitz 20163 1.Nonlinear equation 2.Definite integration 3.Double definite integration 4.Numerical differentiation 5.System of linear equations 6.Matrix calculation 7.The least mean square approximation
4
Supported methods Š. Berežný, K. Budajová, E. Komová, H. Glaser-Opitz 20164
5
The MATH Graph Dialog Window Š. Berežný, K. Budajová, E. Komová, H. Glaser-Opitz 20165
6
Example (two graphs) Š. Berežný, K. Budajová, E. Komová, H. Glaser-Opitz 20166
7
Š. Berežný, K. Budajová, E. Komová, H. Glaser-Opitz 20167 Nonlinear equation Bisection method Regula Falsi method Secant method Newton method Iteration method
8
Main window for bisection method Š. Berežný, K. Budajová, E. Komová, H. Glaser-Opitz 20168
9
Main window for Regula Falsi method Š. Berežný, K. Budajová, E. Komová, H. Glaser-Opitz 20169
10
Main window for Newton method Š. Berežný, K. Budajová, E. Komová, H. Glaser-Opitz 201610
11
Main window for Secant method Š. Berežný, K. Budajová, E. Komová, H. Glaser-Opitz 201611
12
Main window for Iteration method Š. Berežný, K. Budajová, E. Komová, H. Glaser-Opitz 201612
13
Š. Berežný, K. Budajová, E. Komová, H. Glaser-Opitz 201613 Definite integration Rectangular method Trapezoid method Simpson’s method Monte Carlo Hit of Miss method Monte Carlo Average method
14
Š. Berežný, K. Budajová, E. Komová, H. Glaser-Opitz 201614 Main window for Rectangular method
15
Visualization of definite integration Š. Berežný, K. Budajová, E. Komová, H. Glaser-Opitz 201615
16
Main window for Trapezoid method Š. Berežný, K. Budajová, E. Komová, H. Glaser-Opitz 201616
17
Main window for Simpson’s method Š. Berežný, K. Budajová, E. Komová, H. Glaser-Opitz 201617
18
Definite integration using Monte Carlo Hit or Miss method Š. Berežný, K. Budajová, E. Komová, H. Glaser-Opitz 201618
19
Graphical visualization of definite integration using Monte Carlo Hit or Miss method Š. Berežný, K. Budajová, E. Komová, H. Glaser-Opitz 201619
20
The least square approximation Š. Berežný, K. Budajová, E. Komová, H. Glaser-Opitz 201620
21
Main window for the least square approximation Š. Berežný, K. Budajová, E. Komová, H. Glaser-Opitz 201621
22
To summarize, the MATH application is designed to achieve several goals: Provide all calculation steps for each numerical method with easy to use graphical interface; Enable graphical visualization of calculated data as well as the option of exporting acquired data and graphs in suitable formats. Š. Berežný, K. Budajová, E. Komová, H. Glaser-Opitz 201622
23
Vernier system Š. Berežný, K. Budajová, E. Komová, H. Glaser-Opitz 201623 Vernier Software & Technology was founded in Portland, Oregon in 1981 in the home of David Vernier, a high- school physics teacher, and Christine Vernier, a local business manager.
24
Set of measurments Š. Berežný, K. Budajová, E. Komová, H. Glaser-Opitz 201624 Interface LabQuest and software,
25
Set of measurments Sensors (magnetics field sensor) Š. Berežný, K. Budajová, E. Komová, H. Glaser-Opitz 201625
26
Experiments Determination of kinematic viscosity Determination of gravitational acceleration Š. Berežný, K. Budajová, E. Komová, H. Glaser-Opitz 201626
27
Determination of kinematic viscosity Š. Berežný, K. Budajová, E. Komová, H. Glaser-Opitz 201627
28
Gravitational acceleration Š. Berežný, K. Budajová, E. Komová, H. Glaser-Opitz 201628
29
List of instructions for students Š. Berežný, K. Budajová, E. Komová, H. Glaser-Opitz 201629
30
To summarize, the main benefits to use of Vernier system are: It improves student understanding of science concepts. It supports engagement in higher order thinking skills, such as analysis, synthesis, and evaluation. It enables students to perform many new experiments and measurements not only in the laboratory. Š. Berežný, K. Budajová, E. Komová, H. Glaser-Opitz 201630
31
THANK YOU FOR YOUR ATTENTION Š. Berežný, K. Budajová, E. Komová, H. Glaser-Opitz 201631
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.