Presentation is loading. Please wait.

Presentation is loading. Please wait.

Target: We will be able to identify parent functions of graphs.

Similar presentations


Presentation on theme: "Target: We will be able to identify parent functions of graphs."— Presentation transcript:

1 Target: We will be able to identify parent functions of graphs

2 PARENT FUNCTIONS See handout Constant Function Inverse Linear (Identity)Inverse Squared Absolute Value Exponential Quadratic Logarithmic CubicSquare Root Greatest Integer

3 Constant Function f(x) = a where a = any # Even: Symmetric with y-axis

4 Constant Function Domain: Range: Parent Equation: f(x) = 2 Even: Symmetric with y-axis

5 Constant Function Parent Equation: f(x) = 2 x – intercept: y – intercept: None Even: Symmetric with y-axis

6 Constant Function Graph Description: Horizontal Line Table: xy -22 2 02 12 22 Parent Equation: f(x) = 2

7 Linear Function (Identity) f(x) = x Odd: Symmetric with origin

8 Linear Function (Identity) Domain: Range: Parent Equation: f(x) = x Odd: Symmetric with origin

9 Linear Function (Identity) Parent Equation: f(x) = x x – intercept: y – intercept:

10 Linear Function (Identity) Parent Equation: f(x) = x Table: xy -2 00 11 22 Graph Description: Diagonal Line Odd: Symmetric with origin

11 Absolute Value Function f(x) = │ x │ Even: Symmetric with y-axis

12 Absolute Value Function Domain: Range: Parent Equation: f(x) = │ x │

13 Absolute Value Function Parent Equation: f(x) = │x │ x – intercept: y – intercept:

14 Absolute Value Function Table: xy -22 1 00 11 22 Parent Equation: Graph Description: “V” - shaped f(x) = │ x │

15 f(x) = x 2 Quadratic Function Even: Symmetric with y-axis

16 f(x) = x 2 Quadratic Function Domain: Range: Parent Equation:

17 Quadratic Function Parent Equation: x – intercept: y – intercept: f(x) = x 2

18 Quadratic Function Table: xy -24 1 00 11 24 Parent Equation: Graph Description: “U” - shaped

19 Cubic Function f(x) = x 3 Odd: Symmetric with origin

20 Cubic Function f(x) = x 3 Domain: Range: Parent Equation: Odd: Symmetric with origin

21 Cubic Function f(x) = x 3 Parent Equation: x – intercept: y – intercept:

22 Cubic Function f(x) = x 3 Parent Equation: Table: xy -2-8 00 11 28

23 f(x) = x Square Root Function Neither even nor odd

24 f(x) = x Square Root Function Domain: Range: Parent Equation: Neither even nor odd

25 f(x) = x Square Root Function Parent Equation: x – intercept: y – intercept:

26 f(x) = x Square Root Function Parent Equation: Table: xy 00 11 42 93 164 Graph Description: Horizontal ½ of a Parabola

27 f(x) = 1 x Inverse Function or Rational Function (Reciprocal of x) Odd: Symmetric with origin

28 f(x) = 1 x Inverse Function or Rational Function (Reciprocal of x) Parent Equation: Domain: Range:

29 f(x) = 1 x Inverse Function or Rational Function (Reciprocal of x) Parent Equation: x – intercept: y – intercept:

30 Inverse Function or Rational Function (Reciprocal of x) Table: xy -2-0.5 0Error 11 20.5 f(x) = 1 x Parent Equation: Odd: Symmetric with origin

31 Inverse Squared Function (Reciprocal of x 2 ) f(x) = 1 x 2x 2

32 Inverse Squared Function (Reciprocal of x 2 ) f(x) = 1 x 2x 2 Parent Equation: Domain: Range:

33 Inverse Squared Function (Reciprocal of x 2 ) f(x) = 1 x 2x 2 x – intercept: y – intercept: Parent Equation:

34 Inverse Squared Function (Reciprocal of x 2 ) f(x) = 1 x 2x 2 Parent Equation: Table: xy -20.25 1 0Error 11 20.25

35 Exponential Function b = base and x = exponent Neither even nor odd

36 f(x) = 2 x Exponential Function Domain: Range: Parent Equation: Neither even nor odd

37 f(x) = 2 x Exponential Function x – intercept: y – intercept: Parent Equation:

38 f(x) = 2 x Exponential Function Table: xy -20.25 0.5 01 12 24 Parent Equation: Graph Description: Backwards “L” Curves

39 f(x) = log x Logarithmic Function

40 f(x) = log x Logarithmic Function Range: Parent Equation: Domain:

41 f(x) = log x Logarithmic Function x – intercept: y – intercept: Parent Equation: Neither even nor odd

42 Logarithmic Function Table: xy -2Error Error 0 10 20.301 Parent Equation: f(x) = log x

43 Step Function (Greatest Integer) f(x) = [x] Neither even nor odd

44 Step Function (Greatest Integer) f(x) = [x] Domain: Range: Parent Equation:

45 Step Function (Greatest Integer) f(x) = [x] Parent Equation: x – intercept: y – intercept:

46 Step Function (Greatest Integer) f(x) = [x] Parent Equation: Graph Description: Stair Steps Table: xy -2 00 11 22

47 HW 1.5: Use a graphing calculator, or online graphing utility to graph #19-41 odd, p 71


Download ppt "Target: We will be able to identify parent functions of graphs."

Similar presentations


Ads by Google