Download presentation
Presentation is loading. Please wait.
1
Techniques of Molecular Biology
2
Basic molecular biology techniques
Isolating nucleic acids Cutting DNA into fragments Ligating DNA fragments Amplifying DNA fragments Hybridization techniques Genomics Sequencing genomes Analyzing genome sequences Proteomics Separating proteins Analyzing proteins
3
Basic molecular biology techniques
Isolating nucleic acids
4
Basic molecular biology techniques
Isolating nucleic acids Cutting DNA into fragments
5
DNA can be reproducibly split into fragments by restriction endonucleases
6
DNA fragments can be separated by size in agarose
or polyacrylamide gels Because of the phosphates in the sugar phosphate backbone, nucleic acids are negatively charged. In an electric field nucleic acids will move towards the positive pole. Smaller fragments move faster than larger fragments through the pores of a gel. Very large DNA molecules are separated from each other by special types of electrophoresis, e.g. pulsed field electrophoresis.
7
Basic molecular biology techniques
Isolating nucleic acids Cutting DNA into fragments Ligating DNA fragments
8
Basic molecular biology techniques
Isolating nucleic acids Cutting DNA into fragments Ligating DNA fragments Amplifying DNA fragments DNA can be amplified by Cloning PCR
9
DNA cloning and construction of DNA libraries
Cloning in a plasmid vector Genomic library cDNA library
10
Vectors for DNA cloning
11
Basic molecular biology techniques
Isolating nucleic acids Cutting DNA into fragments Ligating DNA fragments Amplifying DNA fragments DNA can be amplified by Cloning PCR
12
DNA polymerases dATP dTTP dGTP dCTP
13
DNA polymerases
14
The polymerase chain reaction (PCR)
15
Basic molecular biology techniques
Isolating nucleic acids Cutting DNA into fragments Ligating DNA fragments Amplifying DNA fragments Hybridization techniques
16
Single-stranded nucleic acids can bind to each other by base pairing if they contain complementary sequences Using a single-stranded labeled probe complementary base pairing is able to detect specific nucleic acids among many different nucleic acids. If the probe is used to detect DNA, the analysis is called DNA blot (Southern) analysis. If an RNA fragment is detected, the analysis is called RNA blot (northern) analysis.
17
Transcriptome analysis using microarrays
26x24 = 624 spots
18
Basic molecular biology techniques
Isolating nucleic acids Cutting DNA into fragments Ligating DNA fragments Amplifying DNA fragments Hybridization techniques Genomics Sequencing genomes
19
Sequencing techniques
dideoxysequencing pyrosequencing dATP dTTP dGTP dCTP Genomic library denature (make single-stranded) anneal primer extend primer to copy one of the strands
20
Sequencing techniques
dideoxysequencing pyrosequencing 2’ deoxynucleotide 2’-3’-dideoxynucleotide Base Base
21
Sequencing techniques
dideoxysequencing 2’ deoxynucleotide 2’-3’-dideoxynucleotide Base Base
22
Sequencing techniques
dideoxysequencing ddCTP ddTTP ddGTP polyacrylamide gel electrophoresis ≈ 800 nucleotides can be sequenced in one run
23
Sequencing techniques
dideoxysequencing pyrosequencing ≈ 200 nucleotides can be sequenced in one run
24
Next generation sequencing methods
25
Genomics Sequencing genomes (assembling the sequence)
26
Genomics Sequencing genomes (assembling the sequence)
27
Genomics Sequencing genomes (assembling the sequence)
28
Genomics Sequencing genomes Analyzing genome sequences
29
Genomics Sequencing of genomes Split genome into pieces and sequence all pieces. Assembling the sequence (computer). Sequence analysis (annotation 1) Identify genes and other elements in sequence. Functional analysis (annotation 2) Determine function of identified elements.
30
How to find genes in a genome sequence
Protein-coding genes Find open reading frames (protein-coding sequences) Find sequence with a codon bias Find upstream regulatory sequences (e.g. CpG islands) Find exon-intron boundaries Genes coding for functional RNAs Find consensus sequences for tRNAs and ribosomal RNAs Find specific RNA secondary structures (e.g. stem loops) Find upstream regulatory sequences
31
Genomic sequence
32
Finding open reading frames
33
Finding open reading frames
gagtccagttgaaaagcaactggaatccccttatagataaattaatatctattttaaaattgaatagtttttattctagtttcgttttaagattaataaaattatgtctaaccaagtatttactactttacgcgcagcaacattagctgttattttaggtatggctggtggcttagcagtaagtccagctcaagcttaccctgtatttgcacaacaaaactacgctaacccacgtgaggctaatggtcgtattgtatgtgcaaactgtcacttagcgcaaaaagcagttgaaatcgaagtaccacaagctgttttacctgatactgtttttgaagctgttattgaacttccatacgataaacaagttaaacaagttttagctaatggtaaaaaaggtgacttaaacgttggtatggttttaattttaccagaaggttttgaattagcaccaccagatcgcgttccggcagaaattaaagaaaaagttggtaacctttactaccaaccatacagtccagaacaaaaaaatattttagttgttggtccagttccaggtaaaaaatacagtgaaatggtagtacctattttatctccagatcctgctaaaaataaaaacgtttcttacttaaaatatcctatttattttggtggtaatcgtggtcgtggtcaagtatatccagatggtaaaaaatcaaacaacactatttacaacgcatcagcagctggtaaaattgtagcaatcacagctctttctgagaaaaaaggtggttttgaagtttcaattgaaaaagcaaacggtgaagttgttgtagacaaaatcccagcaggtcctgatttaattgttaaagaaggtcaaactgtacaagcagatcaaccattaacaaacaaccctaacgttggtggtttcggtcaggctgaaactgaaattgtattacaaaaccctgctcgtattcaaggtttattagtattcttcagttttgttttacttactcaagttttattagttcttaagaaaaaacaattcgaaaaagttcaattagcagaaatgaacttctaatatttaattttttgtagggctgctgtgcagctcctacaaattttagtatgttatttttaaagtttgatatactgaaaacaaagttctacttgaacgatatttagcttttaatgcTATAATATagcggactaagccgttggcaatttagctgccaattaattttattcgaaggatgtaaacctgctaacgatatttatatataagcattttaatactccgagggaggcctctaacctttagcaagtaagtaaacttccccttcggggcagcaaggcagcagatttaaattctccaaaggaggcagttgatatcagtaaaccccttcgatgactctggcattgatgcaaagcatggggaaactaaagttcctccactgcctccttccccttccctttcgggacgtccccttccccttacgggcaagtaaacttagggattttaatgcaataaataaatttgtccccttacgggacgtcagtggcagttgcgaagtattaatattgtatataaatatagaatgtttacatactccgaaggaggacgtcagtggcagtggtaccgccactgctattttaatactccgaaggagcagtggtggtcccactgccactaaaatttatttgcccgaagacgtcctgccaactgccgaggcaaatgaattttagtggacgtcccttacgggacgtcagtggcagttgcctgccaactgcctccttccccttcgggcaagtaaacttgggagtattaacataggcagtggcggtaccacaataaattaatttgtcctccttccccttcgggcaagtaaacttaggagtatgtaaacattctatatttatatactcccatgctttgccccttaagggacaataaataaatttgtccccttcgggcaaataaatcttagtggcagttgcaaaatattaatatcgtatataaatttggagtatataaataaatttggagtatataaatataggatgttaatactgcggagcagcagtggtggtaccactgccactaaaatttatttgcccgaaggggacgtcctgccaactgccgatatttatatattccctaagtttacttgccccatatttatatattcctaagtttacttgccccatatttatattaggacgtccccttcgggt Expasy server
34
Sequence from the E. coli genome
35
The E. coli genome High gene density on both strands of the E. coli genome.
36
Genes = all DNA sequences that are transcribed into RNA
Protein-coding genes 5’ UTR coding region = open reading frames 3’ UTR 5’ - - 3’ Translation start Translation stop protein-coding gene = DNA transcribed into mRNA UTR = untranslated region
37
Exons and introns in eukaryotic genes
5’ UTR 3’ UTR Features that can be used to find genes in eukaryotic sequences: Codon bias. Exon-intron boundaries. Upstream sequences: in vertebrates CpG islands (in 40-50% of human genes). Figure 5.4 Genomes 3 (© Garland Science 2007)
38
How to find genes in a genome sequence
Protein-coding genes Find open reading frames (protein-coding sequences) Find sequence with a codon bias Find upstream regulatory sequences (e.g. CpG islands) Find exon-intron boundaries Genes coding for functional RNAs Find consensus sequences for tRNAs and ribosomal RNAs Find specific RNA secondary structures (e.g. stem loops) Find upstream regulatory sequences
39
Figure 5.6b Genomes 3 (© Garland Science 2007)
40
A typical sequence annotation result
Automatic annotation, 15 kb sequence of the human genome containing a tissue factor gene. Location of 6 exons revealed. Figure Genomes 3 (© Garland Science 2007)
41
Verifying the identity of a gene
Homology search Experimental techniques Northern hybridization Zoo-blotting
42
Verifying the identity of a gene
Homology search BLAST MSNQVFTTLR AATLAVILGM AGGLAVSPAQ AYPVFAQQNY ANPREANGRI VCANCHLAQK AVEIEVPQAV LPDTVFEAVI ELPYDKQVKQ VLANGKKGDL NVGMVLILPE GFELAPPDRV PAEIKEKVGN LYYQPYSPEQ KNILVVGPVP GKKYSEMVVP ILSPDPAKNK NVSYLKYPIY FGGNRGRGQV YPDGKKSNNT IYNASAAGKI VAITALSEKK GGFEVSIEKA NGEVVVDKIP AGPDLIVKEG QTVQADQPLT NNPNVGGFGQ AETEIVLQNP ARIQGLLVFF SFVLLTQVLL VLKKKQFEKV QLAEMNF BLAST = Basic Local Alignment Search Tool
43
Case study, yeast genome 6274 ORFs
Orphans= genes of unknown function; single orphans = unique genes not found in databases. Additional methods for identifying the function of genes: Comparative genomics. cDNA sequencing. Transposon tagging. Figure Genomes 3 (© Garland Science 2007)
44
Finding the function of a gene (product)
Computer based analysis Homology search Experimental analysis Gene inactivation Overexpression
45
Whole genome studies Tiling assays
46
Proteomics Isolating and separating proteins
Identifying and analyzing proteins
47
Working with proteins Separating proteins
Analyzing proteins and their interactions
48
Separating proteins on polyacrylamide gels
49
Immunoblot (Western blot)
50
Proteins can be sequenced
51
Complex mixtures of proteins can be analyzed by mass spectrometry
MALDI-TOF = Matrix-assisted laser desorption ionization – time of flight
52
Typical workflow in analysis of proteins by mass spectometry
53
Liquid chromatography is used to separate
peptides before mass spectrometry
54
Mass spectrum
55
Mass spectra are compared to theoretical values
56
Mouse liver proteins Example of spots on a gel obtained after 2D electrophoresis. Spots of interest are cut out and protein identified by mass spectrometry. Figure Genomes 3 (© Garland Science 2007)
57
Protein interaction map of yeast
Each dot is a protein. Red dot: essential protein. Figure 6.20a Genomes 3 (© Garland Science 2007)
58
Nucleic acid protein interactions
Electrophoretic mobility shift assay (EMSA)
59
Nuclease protection footprinting is used to identify the DNA sequence to which a protein binds
60
In vitro selection assay uses a combinatorial DNA sequence library to identify DNA sequences to which a protein binds.
61
Chromatin immuno- precipitation (ChIP) Identifies protein-binding sites in vivo
62
Chromosome conformation capture (3C assay) Identifies DNA sequences that are conformationally linked
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.