Presentation is loading. Please wait.

Presentation is loading. Please wait.

Techniques of Molecular Biology

Similar presentations


Presentation on theme: "Techniques of Molecular Biology"— Presentation transcript:

1 Techniques of Molecular Biology

2 Basic molecular biology techniques
Isolating nucleic acids Cutting DNA into fragments Ligating DNA fragments Amplifying DNA fragments Hybridization techniques Genomics Sequencing genomes Analyzing genome sequences Proteomics Separating proteins Analyzing proteins

3 Basic molecular biology techniques
Isolating nucleic acids

4 Basic molecular biology techniques
Isolating nucleic acids Cutting DNA into fragments

5 DNA can be reproducibly split into fragments by restriction endonucleases

6 DNA fragments can be separated by size in agarose
or polyacrylamide gels Because of the phosphates in the sugar phosphate backbone, nucleic acids are negatively charged. In an electric field nucleic acids will move towards the positive pole. Smaller fragments move faster than larger fragments through the pores of a gel. Very large DNA molecules are separated from each other by special types of electrophoresis, e.g. pulsed field electrophoresis.

7 Basic molecular biology techniques
Isolating nucleic acids Cutting DNA into fragments Ligating DNA fragments

8 Basic molecular biology techniques
Isolating nucleic acids Cutting DNA into fragments Ligating DNA fragments Amplifying DNA fragments DNA can be amplified by Cloning PCR

9 DNA cloning and construction of DNA libraries
Cloning in a plasmid vector Genomic library cDNA library

10 Vectors for DNA cloning

11 Basic molecular biology techniques
Isolating nucleic acids Cutting DNA into fragments Ligating DNA fragments Amplifying DNA fragments DNA can be amplified by Cloning PCR

12 DNA polymerases dATP dTTP dGTP dCTP

13 DNA polymerases

14 The polymerase chain reaction (PCR)

15 Basic molecular biology techniques
Isolating nucleic acids Cutting DNA into fragments Ligating DNA fragments Amplifying DNA fragments Hybridization techniques

16 Single-stranded nucleic acids can bind to each other by base pairing if they contain complementary sequences Using a single-stranded labeled probe complementary base pairing is able to detect specific nucleic acids among many different nucleic acids. If the probe is used to detect DNA, the analysis is called DNA blot (Southern) analysis. If an RNA fragment is detected, the analysis is called RNA blot (northern) analysis.

17 Transcriptome analysis using microarrays
26x24 = 624 spots

18 Basic molecular biology techniques
Isolating nucleic acids Cutting DNA into fragments Ligating DNA fragments Amplifying DNA fragments Hybridization techniques Genomics Sequencing genomes

19 Sequencing techniques
dideoxysequencing pyrosequencing dATP dTTP dGTP dCTP Genomic library denature (make single-stranded) anneal primer extend primer to copy one of the strands

20 Sequencing techniques
dideoxysequencing pyrosequencing 2’ deoxynucleotide 2’-3’-dideoxynucleotide Base Base

21 Sequencing techniques
dideoxysequencing 2’ deoxynucleotide 2’-3’-dideoxynucleotide Base Base

22 Sequencing techniques
dideoxysequencing ddCTP ddTTP ddGTP polyacrylamide gel electrophoresis ≈ 800 nucleotides can be sequenced in one run

23 Sequencing techniques
dideoxysequencing pyrosequencing ≈ 200 nucleotides can be sequenced in one run

24 Next generation sequencing methods

25 Genomics Sequencing genomes (assembling the sequence)

26 Genomics Sequencing genomes (assembling the sequence)

27 Genomics Sequencing genomes (assembling the sequence)

28 Genomics Sequencing genomes Analyzing genome sequences

29 Genomics Sequencing of genomes Split genome into pieces and sequence all pieces. Assembling the sequence (computer). Sequence analysis (annotation 1) Identify genes and other elements in sequence. Functional analysis (annotation 2) Determine function of identified elements.

30 How to find genes in a genome sequence
Protein-coding genes Find open reading frames (protein-coding sequences) Find sequence with a codon bias Find upstream regulatory sequences (e.g. CpG islands) Find exon-intron boundaries Genes coding for functional RNAs Find consensus sequences for tRNAs and ribosomal RNAs Find specific RNA secondary structures (e.g. stem loops) Find upstream regulatory sequences

31 Genomic sequence

32 Finding open reading frames

33 Finding open reading frames
gagtccagttgaaaagcaactggaatccccttatagataaattaatatctattttaaaattgaatagtttttattctagtttcgttttaagattaataaaattatgtctaaccaagtatttactactttacgcgcagcaacattagctgttattttaggtatggctggtggcttagcagtaagtccagctcaagcttaccctgtatttgcacaacaaaactacgctaacccacgtgaggctaatggtcgtattgtatgtgcaaactgtcacttagcgcaaaaagcagttgaaatcgaagtaccacaagctgttttacctgatactgtttttgaagctgttattgaacttccatacgataaacaagttaaacaagttttagctaatggtaaaaaaggtgacttaaacgttggtatggttttaattttaccagaaggttttgaattagcaccaccagatcgcgttccggcagaaattaaagaaaaagttggtaacctttactaccaaccatacagtccagaacaaaaaaatattttagttgttggtccagttccaggtaaaaaatacagtgaaatggtagtacctattttatctccagatcctgctaaaaataaaaacgtttcttacttaaaatatcctatttattttggtggtaatcgtggtcgtggtcaagtatatccagatggtaaaaaatcaaacaacactatttacaacgcatcagcagctggtaaaattgtagcaatcacagctctttctgagaaaaaaggtggttttgaagtttcaattgaaaaagcaaacggtgaagttgttgtagacaaaatcccagcaggtcctgatttaattgttaaagaaggtcaaactgtacaagcagatcaaccattaacaaacaaccctaacgttggtggtttcggtcaggctgaaactgaaattgtattacaaaaccctgctcgtattcaaggtttattagtattcttcagttttgttttacttactcaagttttattagttcttaagaaaaaacaattcgaaaaagttcaattagcagaaatgaacttctaatatttaattttttgtagggctgctgtgcagctcctacaaattttagtatgttatttttaaagtttgatatactgaaaacaaagttctacttgaacgatatttagcttttaatgcTATAATATagcggactaagccgttggcaatttagctgccaattaattttattcgaaggatgtaaacctgctaacgatatttatatataagcattttaatactccgagggaggcctctaacctttagcaagtaagtaaacttccccttcggggcagcaaggcagcagatttaaattctccaaaggaggcagttgatatcagtaaaccccttcgatgactctggcattgatgcaaagcatggggaaactaaagttcctccactgcctccttccccttccctttcgggacgtccccttccccttacgggcaagtaaacttagggattttaatgcaataaataaatttgtccccttacgggacgtcagtggcagttgcgaagtattaatattgtatataaatatagaatgtttacatactccgaaggaggacgtcagtggcagtggtaccgccactgctattttaatactccgaaggagcagtggtggtcccactgccactaaaatttatttgcccgaagacgtcctgccaactgccgaggcaaatgaattttagtggacgtcccttacgggacgtcagtggcagttgcctgccaactgcctccttccccttcgggcaagtaaacttgggagtattaacataggcagtggcggtaccacaataaattaatttgtcctccttccccttcgggcaagtaaacttaggagtatgtaaacattctatatttatatactcccatgctttgccccttaagggacaataaataaatttgtccccttcgggcaaataaatcttagtggcagttgcaaaatattaatatcgtatataaatttggagtatataaataaatttggagtatataaatataggatgttaatactgcggagcagcagtggtggtaccactgccactaaaatttatttgcccgaaggggacgtcctgccaactgccgatatttatatattccctaagtttacttgccccatatttatatattcctaagtttacttgccccatatttatattaggacgtccccttcgggt Expasy server

34 Sequence from the E. coli genome

35 The E. coli genome High gene density on both strands of the E. coli genome.

36 Genes = all DNA sequences that are transcribed into RNA
Protein-coding genes 5’ UTR coding region = open reading frames 3’ UTR 5’ - - 3’ Translation start Translation stop protein-coding gene = DNA transcribed into mRNA UTR = untranslated region

37 Exons and introns in eukaryotic genes
5’ UTR 3’ UTR Features that can be used to find genes in eukaryotic sequences: Codon bias. Exon-intron boundaries. Upstream sequences: in vertebrates CpG islands (in 40-50% of human genes). Figure 5.4 Genomes 3 (© Garland Science 2007)

38 How to find genes in a genome sequence
Protein-coding genes Find open reading frames (protein-coding sequences) Find sequence with a codon bias Find upstream regulatory sequences (e.g. CpG islands) Find exon-intron boundaries Genes coding for functional RNAs Find consensus sequences for tRNAs and ribosomal RNAs Find specific RNA secondary structures (e.g. stem loops) Find upstream regulatory sequences

39 Figure 5.6b Genomes 3 (© Garland Science 2007)

40 A typical sequence annotation result
Automatic annotation, 15 kb sequence of the human genome containing a tissue factor gene. Location of 6 exons revealed. Figure Genomes 3 (© Garland Science 2007)

41 Verifying the identity of a gene
Homology search Experimental techniques Northern hybridization Zoo-blotting

42 Verifying the identity of a gene
Homology search BLAST MSNQVFTTLR AATLAVILGM AGGLAVSPAQ AYPVFAQQNY ANPREANGRI VCANCHLAQK AVEIEVPQAV LPDTVFEAVI ELPYDKQVKQ VLANGKKGDL NVGMVLILPE GFELAPPDRV PAEIKEKVGN LYYQPYSPEQ KNILVVGPVP GKKYSEMVVP ILSPDPAKNK NVSYLKYPIY FGGNRGRGQV YPDGKKSNNT IYNASAAGKI VAITALSEKK GGFEVSIEKA NGEVVVDKIP AGPDLIVKEG QTVQADQPLT NNPNVGGFGQ AETEIVLQNP ARIQGLLVFF SFVLLTQVLL VLKKKQFEKV QLAEMNF BLAST = Basic Local Alignment Search Tool

43 Case study, yeast genome 6274 ORFs
Orphans= genes of unknown function; single orphans = unique genes not found in databases. Additional methods for identifying the function of genes: Comparative genomics. cDNA sequencing. Transposon tagging. Figure Genomes 3 (© Garland Science 2007)

44 Finding the function of a gene (product)
Computer based analysis Homology search Experimental analysis Gene inactivation Overexpression

45 Whole genome studies Tiling assays

46 Proteomics Isolating and separating proteins
Identifying and analyzing proteins

47 Working with proteins Separating proteins
Analyzing proteins and their interactions

48 Separating proteins on polyacrylamide gels

49 Immunoblot (Western blot)

50 Proteins can be sequenced

51 Complex mixtures of proteins can be analyzed by mass spectrometry
MALDI-TOF = Matrix-assisted laser desorption ionization – time of flight

52 Typical workflow in analysis of proteins by mass spectometry

53 Liquid chromatography is used to separate
peptides before mass spectrometry

54 Mass spectrum

55 Mass spectra are compared to theoretical values

56 Mouse liver proteins Example of spots on a gel obtained after 2D electrophoresis. Spots of interest are cut out and protein identified by mass spectrometry. Figure Genomes 3 (© Garland Science 2007)

57 Protein interaction map of yeast
Each dot is a protein. Red dot: essential protein. Figure 6.20a Genomes 3 (© Garland Science 2007)

58 Nucleic acid protein interactions
Electrophoretic mobility shift assay (EMSA)

59 Nuclease protection footprinting is used to identify the DNA sequence to which a protein binds

60 In vitro selection assay uses a combinatorial DNA sequence library to identify DNA sequences to which a protein binds.

61 Chromatin immuno- precipitation (ChIP) Identifies protein-binding sites in vivo

62 Chromosome conformation capture (3C assay) Identifies DNA sequences that are conformationally linked


Download ppt "Techniques of Molecular Biology"

Similar presentations


Ads by Google