Presentation is loading. Please wait.

Presentation is loading. Please wait.

“Neutrino mass determination”

Similar presentations


Presentation on theme: "“Neutrino mass determination”"— Presentation transcript:

1 “Neutrino mass determination”
- Florian Fränkle -

2 Outline Neutrino masses Single b-decay experiments
163Ho electron capture experiments 0nbb-decay experiments Cosmology Summary Florian Fränkle, “Neutrino mass determination” ALPS 2017, Obergurgl, Austria

3 Neutrino masses ne nm nt m1 m2 m3 Ue1 Um1 Ut1 Ue2 Um2 Ut2 Ue3 Um3 Ut3 = Neutrino flavour eigenstates are related to neutrino mass eigenstates by the lepton mixing matrix (PMNS) Neutrino oscillations are sensitive to the differences between the squares of neutrino masses Two mass ordering scenarios possible The value of the lightest neutrino mass is unknown normal inverted m3 2 m2 m1 m ? Dmatm. ne nm nt Dmsol. mass ordering Florian Fränkle, “Neutrino mass determination” ALPS 2017, Obergurgl, Austria

4 Neutrino masses Neutrinos are massive particles, but so far there are only upper and lower limits Absolute neutrino mass scale is one of the big open questions in particle physics, astrophysics and cosmology Different approaches to determine neutrino mass: direct measurements neutrino mass cosmology 0nbb decay Florian Fränkle, “Neutrino mass determination” ALPS 2017, Obergurgl, Austria

5 Neutrino mass and single b-decay
Fermi theory of b-decay: b-decay: n → p + e- + ne Neutrino mass influences energy spectrum of b-decay electrons Neutrino mass determination via precise measurement of the spectral shape close to the endpoint Model independent method b-spectrum for tritium (E0 = 18.6 keV, T1/2 = 12.3 y): Florian Fränkle, “Neutrino mass determination” ALPS 2017, Obergurgl, Austria

6 Cryogenic Pumping sections
The KATRIN experiment KArlsruhe TRItium Neutrino experiment Goal: Measure neutrino mass with a sensitivity of 0.2 eV/c² (90% C.L.) ~ 70 m Pre-Spectro-meter Differential and Cryogenic Pumping sections Main Spectrometer Detector Windowless Gaseous Tritium Source tritium b-decay decay rate: /s T2 pressure: to 10-6 mbar b-electron transport tritium retention (factor < 10-12) energy analysis of b-electrons resolution keV pressure < mbar counting of transmitted b-electrons Florian Fränkle, “Neutrino mass determination” ALPS 2017, Obergurgl, Austria

7 October 14th, 2016 – KATRIN first light
Experiment to Weigh 'Ghost Particles' Starts in Germany KATRIN celebrates first beam Experimente zum Wiegen von Neutrinos starten in Karlsruhe Neutrinos kommen auf die Waage Experiment starts to find weight of 'ghost particles' The KATRIN Tritium Neutrino experiment: A giant scale for the tiniest of particles Forscher geben Startschuss zum Wiegen von Geisterteilchen Neutrino Mass: Germany’s KATRIN Experiment Aims To Weigh The Universe’s Lightest Particle Neutrinos auf der Waage Florian Fränkle, “Neutrino mass determination” ALPS 2017, Obergurgl, Austria

8 rear wall electron beam
KATRIN first light rear wall electron beam photo-electrons produced via UV light illumination of rear wall (-50 V) electron source detector Start of KATRIN beamline commissioning: for the first time electrons were transported along the complete beamline Measurement campaign to investigate alignment and ion blocking system Florian Fränkle, “Neutrino mass determination” ALPS 2017, Obergurgl, Austria

9 KATRIN first light – alignment
rear wall electron beam ELIOTT electron beam ELIOTT electron beam rear wall electron beam 90 mm 5 mm electron sources detector mm KATRIN beamline is aligned and in good agreement with simulations Unobstructed transport of 191 Tcm² flux tube from source to detector Measurements with 83mKr this summer, start tritium runs in 2018 Florian Fränkle, “Neutrino mass determination” ALPS 2017, Obergurgl, Austria

10 Cyclotron Resonance Emission Spectroscopy
B electron antenna array Simulated spectrum (105 T2 decays)* Idea: Measure b-spectrum via coherent cyclotron radiation emitted by an energetic electron in a magnetic field (radiated power about 1 fW) Frequency of emitted radiation independent of electron pitch angle Q New form of nondestructive spectroscopy * B. Monreal, J.A. Formaggio, PHYSICAL REVIEW D 80, (R) (2009), DOI: /PhysRevD Florian Fränkle, “Neutrino mass determination” ALPS 2017, Obergurgl, Austria

11 Project 8 83mKr * onset frequency → initial energy energy loss (cyclotron radiation) scattering energy loss, changing pitch angle First detection of single-electron cyclotron radiation (June 2014) Spectrum generation via event reconstruction Initial energy resolution (140 eV) could be improved to 3.3 eV (FWHM) Measure first tritium spectrum in 2017 (mn < 10 – 100 eV) Long-term goal: large scale experiment with atomic tritium source and 40 meV sensitivity (hierarchy scale) ‡ A.A. Esfahani et. al. “Determining the neutrino mass with cyclotron radiation emission spectroscopy-Project 8”, J. Phys. G: Nucl. Part. Phys. 44 (2017) * D.M. Asner et. al. “Single-Electron Detection and Spectroscopy via Relativistic Cyclotron Radiation”, Physical Review Letters, 114, (2015), DOI: /PhysRevLett Florian Fränkle, “Neutrino mass determination” ALPS 2017, Obergurgl, Austria

12 Neutrino mass and electron capture
Electron capture: p + e- → n + ne Neutrino mass affects the de-excitation energy spectrum Calorimetric measurement of atomic de-excitation (x-rays, Auger electrons, Coster-Kronig transitions) * 163Ho T1/2: 4570 yr Q(EC): 2.83 keV MII MI NI NII neutrino calorimeter electron capture thermometer thermal link, readout heat sink (< 1 K) * Christian Enss, “Neutrino Mass Determination by Electron Capture in Holmium-163” ECT workshop Determination of the absolute electron (anti-)neutrino mass, Trento Florian Fränkle, “Neutrino mass determination” ALPS 2017, Obergurgl, Austria

13 163Ho electron capture experiments
magnetic micro-calorimeter (MMC) arrays with microwave squid multiplexing readout fast rise time (~ 130 ns) and excellent linearity & resolution (DE ~ 5 eV) transition edge sensors NuMECS absorber 163Ho implanted area Au:Er sensor pick-up coil * investigate the electron neutrino mass in the energy range below 1 eV by a high-precision and high-statistics calorimetric measurement * P.C.-O. Ranitzsch et al., J Low Temp Phys (2012) 167:1004–1014 DOI: /s Florian Fränkle, “Neutrino mass determination” ALPS 2017, Obergurgl, Austria

14 Double b-decay if 0nbb is discovered: lepton number violation
energy spectrum n p e = ne ne 0nbb n p e ne energy [Qbb] 1 2nbb 0nbb if 0nbb is discovered: lepton number violation neutrino is its own antiparticle (Majorana particle) measure of effective neutrino mass mbb Florian Fränkle, “Neutrino mass determination” ALPS 2017, Obergurgl, Austria

15 0nbb experiments Experiment Isotope Technique AMoRE 100Mo Low-T MMC
CANDLES 48Ca CaF2 scintillator + veto CARVEL 48CaWO4 crystal scintillator CDEX 76Ge Point contact Ge COBRA 116Cd, etc CdZnTe detectors CUORE/CUORE-0 130Te TeO2 bolometers CUPID 130Te, 82Se, 100Mo, 116Cd Hybrid bolometers DCBA/MTD Foils + tracker EXO200 136Xe LXe TPC GERDA Semicoax / point contact HPGe KamLAND-Zen Liquid scintillator LEGEND Point contact HPGe LUCIFER 82Se ZnSe scintillator bolometer Majorana Demonstrator MOON Foils + scintillator NEMO 100Mo, 82Se nEXO NEXT High-P TPC PandaX SNO+ SuperNEMO Florian Fränkle, “Neutrino mass determination” ALPS 2017, Obergurgl, Austria

16 GERDA The GERmanium Detector Array (GERDA) searches for neutrinoless double beta decay in 76Ge Located underground at Gran Sasso National Laboratory Five detector strings with a total target mass of 20 kg are installed in 64 m³ of liquid argon Installed LAr scintillation light veto for background suppression after Phase I Phase II measurements currently ongoing * * * Matteo Agostini, “First results from Gerda Phase II” Neutrino 2016, London ‡ Christoph Wiesinger, “GERDA meets KATRIN” KATRIN analysis workshop 2016, Munich Florian Fränkle, “Neutrino mass determination” ALPS 2017, Obergurgl, Austria

17 GERDA * GERDA Phase II is a high-resolution and background-free experiment Combined Phase I + II sensitivity: T > 4.0 × 1025 yr (90% C.L), preliminary 1/2 0n ‡ GERDA collaboration, “Background-free search for neutrinoless double-β decay of 76Ge with GERDA” NATURE VOL , DOI: /nature21717 * Matteo Agostini, “First results from Gerda Phase II” Neutrino 2016, London Florian Fränkle, “Neutrino mass determination” ALPS 2017, Obergurgl, Austria

18 KamLAND-Zen * KamLAND-Zen repurposed the KamLAND liquid scintillator detector for the search of neutrinoless double beta decay in 136Xe Target mass 383 kg Xe (91 % 136Xe) Xe purification system Combined result phase 1 + 2: 1000 t ultra-pure LS buffer oil PMTs water * T > 1.07 × 1026 yr (90% C.L) 1/2 0n Detector is currently being upgraded for operation with 750 kg enriched Xe R&D for future upgrade to 1000 kg Xe in order to cover the region of inverted mass ordering * Junpei Shirai, “Results and future plans for the KamLAND-Zen” Neutrino 2016, London Florian Fränkle, “Neutrino mass determination” ALPS 2017, Obergurgl, Austria

19 Cosmological data – Planck
CMB temperature power spectrum neutrino mass constraints * * Depending on their mass, neutrinos have an effect on the shape of the CMB power spectrum Model dependent method, combination of different data sets yield different results * Planck Collaboration, “Planck 2015 results – XIII. Cosmological parameters”, A&A, 594 (2016) A13, DOI: / / Florian Fränkle, “Neutrino mass determination” ALPS 2017, Obergurgl, Austria

20 Summary Neutrino mass determination is an active field with various experiments using different techniques Mainz and Troitsk, < 2 eV ECHo * GERDA KATRIN KamLAND-Zen Planck Project 8 tonne-scale experiments * Based on J. Phys. A.A. Esfahani et al. G: Nucl. Part. Phys. 44 (2017) ‡ based on arXiv: v3 Florian Fränkle, “Neutrino mass determination” ALPS 2017, Obergurgl, Austria

21 Backup xxx yy Florian Fränkle, “Neutrino mass determination” ALPS 2017, Obergurgl, Austria

22 KATRIN – measurement KATRIN will measure the integrated b-spectrum close to the T2 endpoint E0 The influence of mn is most pronounced a few eV below E0 Optimized measurement time distribution to increase sensitivity Florian Fränkle, “Neutrino mass determination” ALPS 2017, Obergurgl, Austria

23 KATRIN – MAC-E filter Magnetic Adiabatic Collimation combined with an Electrostatic Filter magnetic moment: energy resolution: Q = 0° Q = 15° Q = ° B pe q 1 1 1 transmission qU0 energy qU0 qU0 qU0+DE Florian Fränkle, “Neutrino mass determination” ALPS 2017, Obergurgl, Austria

24 internal radioactivity 40K, … external radioactivity
KATRIN – backgrounds vessel wire electrodes e H H* H- 210Pb ~ 1 kBq internal radioactivity cosmic muons 210Pb, … a g NR e BBR field emission e H2 FPD Penning discharge e e insulator processes H+ UV 219Rn g baffle 40K, … external radioactivity All previously known background processes are efficiently suppressed Background rate about 50 times larger than design value (10 mcps), presumably due to ionization of Rydberg atoms by black body radiation Florian Fränkle, “Neutrino mass determination” ALPS 2017, Obergurgl, Austria

25 Project 8 – atomic source
J. Phys. G: Nucl. Part. Phys. 44 (2017) (16pp) Florian Fränkle, “Neutrino mass determination” ALPS 2017, Obergurgl, Austria

26 0nbb nuclear matrix elements
Florian Fränkle, “Neutrino mass determination” ALPS 2017, Obergurgl, Austria


Download ppt "“Neutrino mass determination”"

Similar presentations


Ads by Google