Presentation is loading. Please wait.

Presentation is loading. Please wait.

Will Bergman and Mike Ma

Similar presentations


Presentation on theme: "Will Bergman and Mike Ma"β€” Presentation transcript:

1 Will Bergman and Mike Ma
Harmonic Oscillators Will Bergman and Mike Ma

2 Overview Simple Harmonic Motion Driven Simple Harmonic Oscillators
Spring and Mass Periodic Driving Force General Form Resonance Damped Simple Harmonic Oscillators Tacoma Bridge Example Conclusion and Further Applications Underdamped Case Overdamped Case Critically Damped Case

3 Spring and Mass 𝐹=π‘šπ‘Ž π‘š 𝑑 2 π‘₯ 𝑑 𝑑 2 =βˆ’π‘˜π‘₯ Guess: π‘₯ 𝑑 = 𝑒 π‘Ÿπ‘‘
π‘š 𝑑 2 π‘₯ 𝑑 𝑑 2 =βˆ’π‘˜π‘₯ Guess: π‘₯ 𝑑 = 𝑒 π‘Ÿπ‘‘ π‘Ÿ 1 =+𝑖 π‘˜ π‘š , π‘Ÿ 2 =βˆ’π‘– π‘˜ π‘š π‘₯ 𝑑 = 𝐢 1 π‘₯ 1 𝑑 + 𝐢 2 π‘₯ 2 𝑑 π‘₯ 𝑑 = 𝐢 1 𝑒 π‘Ÿ 1 𝑑 + 𝐢 2 𝑒 π‘Ÿ 1 𝑑 (Taylor, 2003)

4 General Form π‘š 𝑑 2 π‘₯ 𝑑 𝑑 2 =βˆ’π‘˜π‘₯
π‘š 𝑑 2 π‘₯ 𝑑 𝑑 2 =βˆ’π‘˜π‘₯ π‘₯ 𝑑 = 𝐢 1 + 𝐢 2 π‘π‘œπ‘  𝑀𝑑 +𝑖 𝐢 1 βˆ’ 𝐢 2 𝑠𝑖𝑛 𝑀𝑑 π‘₯ 𝑑 =𝐡 1 π‘π‘œπ‘  𝑀𝑑 + 𝐡 2 𝑠𝑖𝑛 𝑀𝑑 (Taylor, 2003)

5 Damped Simple Harmonic Oscillators
B – damping constant 𝑀 natural frequency Relationship between B and 𝑀 0 determine different cases of damping Solution form: π‘₯ 𝑑 = 𝑒 π‘Ÿπ‘‘

6 Underdamped Case (𝐡< 𝑀 0 )
𝐡 2 βˆ’ 𝑀 =𝑖 𝑀 0 2 βˆ’ 𝐡 2 =𝑖 𝑀 1 π‘₯ 𝑑 =𝑒 βˆ’π΅π‘‘ ( 𝐢 1 𝑒 𝑖 𝑀 1 𝑑 + 𝐢 2 𝑒 βˆ’π‘– 𝑀 1 𝑑 ) Amplitude of oscillations decrease exponentially (Taylor, 2003)

7 Overdamped Case (𝐡> 𝑀 0 )
π‘₯ 𝑑 = 𝑒 βˆ’π΅π‘‘ ( 𝐢 1 𝑒 𝐡 2 βˆ’ 𝑀 𝑑 + 𝐢 2 𝑒 βˆ’ 𝐡 2 βˆ’ 𝑀 𝑑 ) No Oscillations! (Taylor, 2003)

8 Critically Damped Case (𝐡= 𝑀 0 )
Repeated Eigenvalues 𝐡= 𝑀 0 is a bifurcation value π‘₯ 𝑑 = 𝑒 βˆ’π΅π‘‘ π‘₯(𝑑)=𝑑𝑒 βˆ’π΅π‘‘ π‘₯ 𝑑 = 𝐢 1 𝑒 βˆ’π΅π‘‘ + 𝐢 2 𝑑𝑒 βˆ’π΅π‘‘ (Blanchard et al., 2012) (Taylor, 2003)

9 Driven Simple Harmonic Oscillators
𝑑 2 π‘₯ 𝑑 𝑑 2 +𝐡 𝑑π‘₯ 𝑑𝑑 + 𝑀 0 2 π‘₯=𝑓(𝑑) Solution = general solution of homogeneous equation (unforced) + one particular solution to nonhomogeneous equation (forced) π‘₯ 𝑑 = 𝐢 1 π‘₯ 1 𝑑 + 𝐢 2 π‘₯ 2 𝑑 + π‘₯ 𝑝 (𝑑) Resonance- the frequency of the driving force is equal to the natural frequency of the oscillating system

10 Conclusion and Further Applications of Theory

11 References Taylor, John R. "Chapter 5: Oscillations." Classical Mechanics. Sausalito, CA: U Science, Print. Blanchard, Paul, Robert L. Devaney, and Glen R. Hall. "Chapter 2.3: The Damped Harmonic Oscillator." Differential Equations. Boston, MA: Brooks/Cole, Cengage Learning, Print.


Download ppt "Will Bergman and Mike Ma"

Similar presentations


Ads by Google