Presentation is loading. Please wait.

Presentation is loading. Please wait.

Lecture Notes 9 Prediction Limits

Similar presentations


Presentation on theme: "Lecture Notes 9 Prediction Limits"— Presentation transcript:

1 Lecture Notes 9 Prediction Limits
Zhangxi Lin ISQS Texas Tech University Note: Most slides in this file are sourced from Course Notes

2 Section 3.1 Profit Variability

3 Random Profit Consequences
Primary Decision random deterministic Profiti = Yi - costsi y Profit

4 Conditional Profits Profiti = Yi - costsi Primary Decision random
deterministic Profiti = Yi - costsi y y

5 Expected Profit Consequence
Primary Decision random deterministic Profiti = Yi - costsi Primary Outcome Secondary d(y|xi) EPCi = E(Yi) - costsi y = p(xi)·D(xi) - costsi ^ y

6 Predicted Profit Plots
N=96,367 Scaled Total Profit Overall Average EPCi Σ 10 20 30 40 50 60 70 80 90 % selected $10,000 $12,000 $14,000 $16,000 $8,000 $6,000 $4,000

7 Predicted and Observed Profit Plots
Overall Average Profit EPCi Σ 10 20 30 40 50 60 70 80 90 % selected OPi (training) $10,000 $12,000 $14,000 $16,000 $8,000 $6,000 $4,000 Scaled Total

8 Predicted and Observed Profit Plots
Overall Average Profit EPCi Σ 10 20 30 40 50 60 70 80 90 % selected OPi (training) OPi (validation) $10,000 $12,000 $14,000 $16,000 $8,000 $6,000 $4,000 Scaled Total

9 Predicted and Observed Profit Plots
Overall Average Profit Scaled Total Profit Sum of independent r.v. (not i.d.) N=96,367 Lyapunov conditions  var(Σ)=Σvari $10,000 $12,000 $14,000 $16,000 $8,000 $6,000 $4,000 EPCi Σ OPi (training) Σ OPi (validation) Σ 10 20 30 40 50 60 70 80 90 % selected

10 Beyond Expectations: Variability in Profit
Profiti = Yi - costsi EPCi = E(Yi) - costsi ^ ^ = p(xi)·D(xi) - costsi Var( Profiti ) = Var (Yi) = E(Yi2) – (EYi)2

11 Beyond Expectations: Variability in Profit
Profiti = Yi - costsi E( Profiti ) = E(Yi) - costsi = p(xi)·D(xi) - costsi ^ Var( Profiti ) = Var (Yi) = pi·[E(Di2)-Di2·pi] need to estimate

12 Some Second Moment Estimates
 Normal* σ2 + Di2  Poisson Di + Di2  Gamma Di2 ·(1+1/σshape)  Lognormal Di2 ·exp(σ2) Distribution Estimate ^

13 Some Profit Variance Estimates
Distribution Estimate ^ ^ ^ ^ ^  Normal* pi·Di2 [ 1–pi + σ2/Di2 ] ^ ^ ^ ^  Poisson pi·Di2 [ 1–pi + 1/Di ] ^ ^ ^ ^  Gamma pi·Di2 [ 1–pi + 1/ σshape ] ^ ^ ^ ^  Lognormal pi·Di2 [ 1–pi + exp(σ2)–1 ]

14 Profit Plots with Tolerance Limits
Overall Average Profit EPCi Σ 10 20 30 40 50 60 70 80 90 % selected OPi EPCi ± 2 √Σ Var(Profiti) $10,000 $12,000 $14,000 $16,000 $8,000 $6,000 $4,000 Scaled Total

15 Profit Plots with Tolerance Limits
Overall Average Profit EPCi Σ 10 20 30 40 50 60 70 80 90 % selected OPi (training) OPi (validation) $10,000 $12,000 $14,000 $16,000 $8,000 $6,000 $4,000 OPi (score) Scaled Total

16 for “solicit everyone” model
1998 KDD-Cup Results 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. $14,712 14,662 13,954 13,825 13,794 13,598 13,040 12,298 11,423 11,276 Total Profit Rank $0.153 0.152 0.145 0.143 0.141 0.135 0.128 0.119 0.117 Overall Avg. Profit 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. $ 10,720 10,706 10,112 10,049 9,741 9,464 5,683 5,484 1,925 1,706 $ 0.111 0.111 0.105 0.104 0.101 0.098 0.059 0.057 0.020 0.018 $10,560 $ 0.110 Total profit Avg. profit for “solicit everyone” model

17 Prediction Limits: The Good
Quantifies uncertainty in expected profit estimates Lends perspective to model comparisons Gives insight into model fit $ ± $

18 Prediction Limits: The Bad
Does not account for model variability Skewed by outlying predictions $

19 Model Variability Σ Same Model Specification Same Training Data
Overall Average Profit 10 20 30 40 50 60 70 80 90 % selected Same Model Specification Same Training Data Different Parameter Initialization EPCi Σ

20 Prediction Limits: The Ugly
Requires scaling adjustments for sampling Surprises analysts/management ¡¡¡

21 Scaling Prediction Limits (More CLT)
$100,000 $120,000 $140,000 $160,000 $80,000 $60,000 $40,000 N=963,670 Overall Average Profit 10 20 30 40 50 60 70 80 90 % selected Overall Average Profit Limits Scale by 1/√N Total Profit Limits Scale by √N Scaled Total


Download ppt "Lecture Notes 9 Prediction Limits"

Similar presentations


Ads by Google