Download presentation
Presentation is loading. Please wait.
Published byVictoria Fletcher Modified over 10 years ago
1
Colloque Paul GauduchonPalaiseau, 20/05/05 8-DIMENSIONAL QUATERNIONIC GEOMETRY 8-DIMENSIONAL QUATERNIONIC GEOMETRY Simon Salamon Politecnico di Torino
2
Colloque Paul GauduchonPalaiseau, 20/05/05 Contents Dirac operators Model geometries 4-forms and spinors Types of Q structures Q symplectic manifolds
3
Colloque Paul GauduchonPalaiseau, 20/05/05 4-FORMS AND SPINORS 4-FORMS AND SPINORS
4
Colloque Paul GauduchonPalaiseau, 20/05/05 4-forms in dimension 8 Possible dimensions include
5
Colloque Paul GauduchonPalaiseau, 20/05/05 A simple example
6
Colloque Paul GauduchonPalaiseau, 20/05/05 A complex variant
7
Colloque Paul GauduchonPalaiseau, 20/05/05 A complex variant
8
Colloque Paul GauduchonPalaiseau, 20/05/05 The quaternionic 4-form
9
Colloque Paul GauduchonPalaiseau, 20/05/05 Set of OQSs Symmetric spaces 3-forms 8 = 3 + 5 3-forms 8 = 3 + 5
10
Colloque Paul GauduchonPalaiseau, 20/05/05 Triality for Sp(2)Sp(1)
11
Colloque Paul GauduchonPalaiseau, 20/05/05 Clifford multiplication X determines 8 = 3 + 5
12
Colloque Paul GauduchonPalaiseau, 20/05/05 TYPES OF QUATERNIONIC STRUCTURES TYPES OF QUATERNIONIC STRUCTURES
13
Colloque Paul GauduchonPalaiseau, 20/05/05 Reduction of structure The 4-form determines the metric and Levi-Civita connection on the bundle with fibre The 4-form determines the metric and Levi-Civita connection on the bundle with fibre
14
Colloque Paul GauduchonPalaiseau, 20/05/05 Intrinsic torsion
15
Colloque Paul GauduchonPalaiseau, 20/05/05 Q symplectic manifolds
16
Colloque Paul GauduchonPalaiseau, 20/05/05 Quaternionic manifolds Nijenhuis = 0
17
Colloque Paul GauduchonPalaiseau, 20/05/05 M 8 has an integrable twistor space I,J,K can be chosen with I complex Quaternionic manifolds
18
Colloque Paul GauduchonPalaiseau, 20/05/05 DIRAC OPERATORS
19
Colloque Paul GauduchonPalaiseau, 20/05/05 Rigidity principle G acts trivially on M Wolf space
20
Colloque Paul GauduchonPalaiseau, 20/05/05 The tautological section An Sp(2)Sp(1) structure determines or
21
Colloque Paul GauduchonPalaiseau, 20/05/05 Proposition [Witt] The tautological section
22
Colloque Paul GauduchonPalaiseau, 20/05/05 Killing spinors M QK, X an infinitesimal isometry
23
Colloque Paul GauduchonPalaiseau, 20/05/05 Killing spinors
24
Colloque Paul GauduchonPalaiseau, 20/05/05 MODEL GEOMETRIES
25
Colloque Paul GauduchonPalaiseau, 20/05/05 M is QK ( ) M is Einstein ( ) M 8 is symmetric Quaternion-Kahler manifolds
26
Colloque Paul GauduchonPalaiseau, 20/05/05 Wolf spaces M 8 QK symmetric
27
Colloque Paul GauduchonPalaiseau, 20/05/05 1. Projection Links with HK and G 2 holonomy
28
Colloque Paul GauduchonPalaiseau, 20/05/05 Complex coadjoint orbits Any nilpotent orbit N has both QK and HK metrics The hunt for potentials: [Biquard-Gauduchon, Swann]
29
Colloque Paul GauduchonPalaiseau, 20/05/05 2. The case SL(3,C) 8 = 3 + 5
30
Colloque Paul GauduchonPalaiseau, 20/05/05 2. The case SL(3,C) M 8 parametrizes a subset of OQSs
31
Colloque Paul GauduchonPalaiseau, 20/05/05 QUATERNIONIC SYMPLECTIC MANIFOLDS
32
Colloque Paul GauduchonPalaiseau, 20/05/05 Q contact structures On hypersurfaces and asymptotic boundaries of QK manifolds with non-degenerate Levi form
33
Colloque Paul GauduchonPalaiseau, 20/05/05 An extra integrability condition is needed for n=1 and allows one to extend QCSs on S 7 [Duchemin] Without the integrability condition, extension to a Q symplectic metric is nonetheless possible Q contact structures
34
Colloque Paul GauduchonPalaiseau, 20/05/05 3. The case SO(5,C) Fibration based on the reduction
35
Colloque Paul GauduchonPalaiseau, 20/05/05 3. The case SO(5,C) Total space is both Kahler and QK:
36
Colloque Paul GauduchonPalaiseau, 20/05/05 3. The case SO(5,C) X 6 has a subspace of 3-forms
37
Colloque Paul GauduchonPalaiseau, 20/05/05 T 2 product examples Ingredients: symplectic with closed primitive 3-forms giving closed 4-form Ingredients: symplectic with closed primitive 3-forms giving closed 4-form
38
Colloque Paul GauduchonPalaiseau, 20/05/05 Compact nilmanifold examples have 3 transverse simple closed 3-forms, with reduction T 2 product examples Applications to SL/CY geometry [Giovannini, Matessi]
39
Colloque Paul GauduchonPalaiseau, 20/05/05 8-DIMENSIONAL QUATERNIONIC GEOMETRY 8-DIMENSIONAL QUATERNIONIC GEOMETRY
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.