Presentation is loading. Please wait.

Presentation is loading. Please wait.

Section 7.5 Proving Triangle Proportions

Similar presentations


Presentation on theme: "Section 7.5 Proving Triangle Proportions"— Presentation transcript:

1 Section 7.5 Proving Triangle Proportions
Friday, October 20, 2017Friday, October 20, 2017 Warm Up 𝑫 𝑨 , 𝟐 (𝑨𝑩𝑪𝑫) 𝑫 (𝟎 , 𝟎) , 𝟐 (𝑨𝑩𝑪𝑫) A D C B

2 Corresponding s Postulate
Example 1. Given: DE ∥ BC Prove: 𝐴𝐷 𝐷𝐵 = 𝐴𝐸 𝐸𝐶 Statements Reasons 1. DE ∥ BC Given 2. m∠ADE = m∠ABC Corresponding s Postulate 3. m∠AED = m∠ACB Corresponding s Postulate AA Similarity 4. ADE  ABC 5. 𝐴𝐷 𝐴𝐵 = 𝐴𝐸 𝐴𝐶 Corresponding side of similar triangles are proportional. 6. AD + DB = AB Segment Addition Postulate

3 Segment Addition Postulate
Example 1 Given: DE ∥ BC Prove: 𝐴𝐷 𝐷𝐵 = 𝐴𝐸 𝐸𝐶 Statements Reasons 7. AE + EC = AC Segment Addition Postulate 8. 𝐴𝐷 𝐴𝐷+𝐷𝐵 = 𝐴𝐸 𝐴𝐸+𝐸𝐶 Substitution (5, 6 and 7) 9. AD(AE + EC) = AE(AD+DB) Cross Products 10. AD ∙ AE + AD ∙ EC = AE ∙ AD +AE ∙ DB Distributive Property 11. AD ∙ AE - AD ∙ AE+ AD ∙ EC = Subtraction Property AE ∙ AD − AD ∙ AE +AE ∙ DB

4 13. AD∙𝐸𝐶 DB∙𝐸𝐶 = AE∙𝐷𝐵 DB∙EC Division Property
Example 1 Given: DE ∥ BC Prove: AD DB = AE EC Statements Reasons 12. 𝐴𝐷∙EC=AE∙DB Simplify 13. AD∙𝐸𝐶 DB∙𝐸𝐶 = AE∙𝐷𝐵 DB∙EC Division Property 14. AD DB = AE EC Simplify

5 Triangle Proportionality
If 𝐷𝐸 ∥ 𝐵𝐶 , then 𝐴𝐷 𝐷𝐵 = 𝐴𝐸 𝐸𝐶

6 Example 2 Prove the length of 𝑆𝑇 . Statements Reasons 1. RSV  RTU Given 2. RSV and RTU are corresponding angles Definition of Corresponding Angles. Converse of Corresponding Angles Theorem 3. 𝑆𝑉 ∥ 𝑇𝑈 4. RVS  RUT Corresponding Angles Theorem 5. ΔRSV  ΔRTU Angle Angle Similarity

7 Corresponding sides of similar triangles are proportional
Example 2 Prove the length of ST. Statements Reasons 6. 𝑅𝑆 𝑅𝑇 = 𝑆𝑉 𝑇𝑈 Corresponding sides of similar triangles are proportional 7. 𝑅𝑆 =10 Given 8. 𝑆𝑉 =8 Given 9. 𝑇𝑈 =12 Given 𝑅𝑇 = 8 12 Substitution (Steps 6, 7, 8, and 9)

8 Example 2 Prove the length of 𝑆𝑇 . 11. 8∙ 𝑅𝑇 =10∙12 Cross Multiply
Statements Reasons 11. 8∙ 𝑅𝑇 =10∙12 Cross Multiply 12. 8∙ 𝑅𝑇 =120 Simplify ∙ 𝑅𝑇 8 = Division Property 14. 𝑅𝑇 =15 Simplify 15. 𝑅𝑆 + 𝑆𝑇 = 𝑅𝑇 Segment Addition

9 Substitution (Steps 7 and 14)
Example 2 Prove the length of 𝑆𝑇 . Statements Reasons 𝑆𝑇 =15 Substitution (Steps 7 and 14) −10 + 𝑆𝑇 =15 −10 Subtraction Property 18. 𝑆𝑇 =5 Simplify

10 Check for proportionality
Example 3 Prove ΔABW ∼ ΔPQW. A W B P Q 20 25 10 8 Statements Reasons 1. 𝐴𝑊 =25 Given 2. 𝐵𝑊 =20 Given 3. 𝑄𝑊 =8 Given 4. 𝑃𝑊 =10 Given 5. 𝐵𝑊 𝑄𝑊 ≟ 𝐴𝑊 𝑃𝑊 Check for proportionality

11 Substitution (Steps 1, 2, 3, 4, & 5)
Example 3 Prove ΔABW ∿ ΔPQW. A W B P Q 20 25 10 8 Statements Reasons Substitution (Steps 1, 2, 3, 4, & 5) · 10 ≟ 25 · 8 Cross Multiply = 200 Simplify 9. m∠AWB = m∠PWQ Vertical Angles 10. ΔABW ∼ ΔPQW Side Angle Side Similarity


Download ppt "Section 7.5 Proving Triangle Proportions"

Similar presentations


Ads by Google