Download presentation
Presentation is loading. Please wait.
1
10 good reasons to perform ITC experiments
Structure & Dynamics of Molecular Machines Eric ENNIFAR CNRS Strasbourg
2
What is ITC ? ITC = Isothermal Titration Calorimetry
Most intermolecular interactions are followed by heat generation or absorption. ITC is a thermodynamic technique that directly measures the heat released or absorbed upon a binding event, thus allowing an accurate determination of: - binding constant (Ka) - reaction stoichiometry (n) - enthalpy (DH) - entropy (DS) Complete thermodynamic profile of the molecular interaction in one single experiment
3
What is ITC ? Endothermic (DH>0) Exothermic (DH<0)
4
What is ITC ? Benefits from ITC:
- true in-solution technique: no labelling/immobilization of the sample is required - no lower or upper molecular weight limitations (applicable from simple diatomic complexes to MDa complexes) - no buffer/salt restriction - direct measurement of sub-millimolar to nanomolar binding constants - sample can be recovered Drawbacks: - requires large amount of sample Applications: Characterization of molecular interactions Ligand screening Enzyme Kinetics Evaluation of the biological activity More…
5
How does ITC work ? An optimal determination of the Kd is obtained if 500 > c > 10 where c = number of sites x Ka x sample concentration An optimal determination of the DH is obtained if the initial plateau is observed during the experiment c=1000 c=100 c=1
6
How does ITC work ? DG = DH - TDS DCp = (DH/T)
DS (entropy) and DG (free Gibbs energy) are obtained from the observed Kd (dissociation constant) and DH (enthalpy) DG = - RT ln (1/Kd) DG = DH - TDS DCp = (DH/T)
7
HIV-1 reverse transcriptase
Quality Control HIV-1 reverse transcriptase + Primer/template DNA + A DLS B Batch with folding problem SDS PAGE MS DH = ± 0.15 kcal/mol DS = 104 cal/mol/deg N = 0.64 Kd = 46 ± 7 nM DH = ± 0.17 kcal/mol DS = 104 cal/mol/deg N = 0.95 Kd = 53 ± 5 nM
8
Monitor step by step successive chemical steps in molecular machines
Incremental-ITC Monitor step by step successive chemical steps in molecular machines
9
HIV-1 reverse transcriptase
Monitoring of biological activity HIV-1 reverse transcriptase + Primer/template DNA + Primer/template 1 Primer/template 2 100% active Thermodynamic signature of the active RT/DNA complex Kd = 59 ± 9 nM DH = 23.4 ± 1.4 kcal/mol DS = 116 cal/mol/K Catalytically-incompetent binding mode
10
Monitoring of biological activity
NVP
11
Kinetic ITC: kinITC Kon, koff
12
vs 5'-AAG AAG AGG AG-3' 3'-TTC TTC TCC TC-5' NikR-operator / DNA
Kinetic ITC: kinITC vs 5'-AAG AAG AGG AG-3' 3'-TTC TTC TCC TC-5' kon M-1s M-1s-1 koff s s-1 NikR-operator / DNA kon M-1s M-1s-1 koff s s-1
13
Bacterial 70S ribosomal initiation complex formation
MW limitations: no limits ! Bacterial 70S ribosomal initiation complex formation 30S-IF2/GTP-mRNA-tRNAfMet,i + 50S } 50S monodisperse QC using DLS 30S
14
Bacterial 70S ribosomal initiation complex formation
MW limitations: no limits ! Bacterial 70S ribosomal initiation complex formation 30S-IF2/GTP-mRNA-tRNAfMet,i + 50S N = 0,41 ∆H = -178,7 ± 3,1 kcal/mol ∆S = -570 cal/mol/deg Kd = 361 ± 31 nM
15
MW limitations: no limits !
1.7 kDa Bac7(1-16) antibiotic N= 1.22 Kd = 217 nM ∆ H = kcal/mol -T∆ S = 7.1 kcal/mol ∆ G = -9.4 kcal/mol 2.4 MDa 70S Ribosome
16
MW limitations: no limits !
96 kDa CrPV IRES RNA N= 1.08 Kd = 48 nM ∆ H = kcal/mol ∆ S = cal/mol/deg 3.3 MDa Yeast 80S Ribosome
17
Truly label-free ! antibiotics Erythromycin Bac7(1-16) Azithromycin
Kd = 217 nM ∆ H = kcal/mol -T∆ S = 7.1 kcal/mol ∆ G = -9.4 kcal/mol N= 1.17 Kd = 40 nM ∆ H = -1.3 kcal/mol -T∆ S = -8.5 kcal/mol ∆ G = -9.8 kcal/mol N= 0.73 Kd = 1 nM ∆ H = -3.0 kcal/mol -T∆ S = -9.0 kcal/mol ∆ G = kcal/mol 70S Ribosome
18
Analysis of molecular forces involved in binding
antibiotics Erythromycin Bac7(1-16) Azithromycin N= 1.22 Kd = 217 nM ∆ H = kcal/mol -T∆ S = 7.1 kcal/mol ∆ G = -9.4 kcal/mol N= 1.17 Kd = 40 nM ∆ H = -1.3 kcal/mol -T∆ S = -8.5 kcal/mol ∆ G = -9.8 kcal/mol N= 0.73 Kd = 1 nM ∆ H = -3.0 kcal/mol -T∆ S = -9.0 kcal/mol ∆ G = kcal/mol 70S Ribosome ∆ H ∆ S ∆ G
19
HIV-1 reverse transcriptase
Heat-capacity change DCp HIV-1 reverse transcriptase + Primer/template DNA +
20
HIV-1 reverse transcriptase
Heat-capacity change DCp HIV-1 reverse transcriptase + Primer/template DNA + -1.14 < DCp < -0.74 Negative DCp: local folding coupled to binding DH = 34°C (van’t Hoff) extremum of the Kd when DH = 0
21
Riboswitch/ligand interaction
ITC-guided crystallization Riboswitch/ligand interaction Kd = 33 nM DH = kcal/mol DS = cal/mol/K N = 0.58 Problem ! Clear Drops … N = 1.01 Native acrylamide gel revealed 2 conformations of the RNA ! New RNA folding protocol
22
+ ITC-guided sample preparation for cryoEM
IF3 30S ribosome 30S-IF3 8 Å resolution
23
Architecture et Réactivité de l’ARN
Reverse Transcriptase Architecture et Réactivité de l’ARN Structure & Dynamics of Molecular Machines Benoit MEYER Guillaume BEC Marie-Aline GERARD Philippe WOLFF Ronald MICURA Jessica STEGER (PhD) Katja FAUSTER (PhD) Ribosome Benoit MEYER Guillaume BEC Philippe WOLFF Stefano MARZI
26
Common issues in crystallization of complexes
- a significant fraction of the protein /RNA is misfolded - the protein concentration is incorrect - a significant fraction of the ligand is inactive and unable to bind the protein/RNA - the ligand concentration is incorrect - presence of unspecific binding sites for the ligand on the protein/RNA - the ligand do not bind the protein/RNA in experimental conditions used for crystallization ITC can be used as a guide in protein(RNA)/ligand crystallization Complete binding profile of protein(RNA)/ligand interaction is provided ‘for free’
27
Understanding a riboswitch using ITC
28
Total timelapse of ITC experiments: 2 days
Sample required: two large T7 transcriptions (~ 1.3 mg RNA) Ligand 202 nt riboswitch Problems for interpretation of chemical probing Problems for interpretation of SPR data Problems for crystallization of the RNA/ligand complex
29
1st day RNA: 20µM ligand: 500µM 30.0°C 32.5°C 35.0°C 37.5°C N1 0,69
Kd1 35 nM DH cal/mol DS1 12,6 cal/mol/deg N2 0,40 Kd2 193 nM DH cal/mol DS2 -0,310 cal/mol/deg N1 0,58 Kd1 114 nM DH cal/mol DS cal/mol/deg N2 0,57 Kd2 10 nM DH cal/mol DS2 5,01 cal/mol/deg N1 0,79 Kd1 61 nM DH cal/mol DS1 -16,8 cal/mol/deg N2 0,34 Kd2 NA DH cal/mol DS2 NA N1 1,08 Kd1 35 nM DH cal/mol DS1 -27,0 cal/mol/deg
30
2nd day RNA recycled on Centricon 10.0°C 30.0°C 6.0°C 27.0°C N1 0,69
Kd1 35 nM DH cal/mol DS1 12,6 cal/mol/deg N2 0,40 Kd2 193 nM DH cal/mol DS2 -0,310 cal/mol/deg N1 0,85 Kd1 61 nM DH cal/mol DS1 25,8 cal/mol/deg N2 0,26 Kd2 262 nM DH cal/mol DS2 9,05 cal/mol/deg N1 0,82 Kd1 NA DH cal/mol DS1 NA N2 0,19 Kd2 NA DH cal/mol DS2 NA N1 0,65 Kd1 NA DH cal/mol DS1 NA N2 0,20 Kd2 NA DH2 2282cal/mol DS2 NA
31
Temperature dependance of DH for sites 1 and 2
DCp ~ kcal/mol/K for site 1 DCp ~ kcal/mol/K for site 2 DH kcal/mol Temperature (°C) 2 alternative species with different binding properties are in solution Site 2 is likely less folded than Site 1 Site 2 has a better affinity (Site 1 partially ‘misfolded’)
32
This Ecoli riboswitch is resistant to temperature changes
Variation of the two populations of riboswitches with the temperature Stoichiometry Temperature (°C) The two populations are in equilibrium Site 1 population is 37°C This Ecoli riboswitch is resistant to temperature changes
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.