Download presentation
Presentation is loading. Please wait.
1
Spatial Econometric Analysis
4 Kuan-Pin Lin Portland State Univerisity
2
Model Estimation Spatial Error Model
Spatial AR(1)
3
Model Estimation Spatial Error Model
Spatial MA(1)
4
Model Estimation Spatial Error Model
Spatial ARMA(1,1)
5
Spatial Error AR(1) Model Maximum Likelihood Estimation
Normal Density Function
6
Spatial Error AR(1) Model Maximum Likelihood Estimation
Log-Likelihood Function
7
Spatial Error AR(1) Model Maximum Likelihood Estimation
Quasi Maximum Likelihood (QML) Estimator
8
Spatial Error AR(1) Model Maximum Likelihood Estimation
Generalization to consider spatial MA(1) and spatial ARMA(1,1) is straightforward. J SPAR(1) (I-rW) SPMA(1) (I+qW)-1 SPARMA(1,1) (I+qW)-1(I-rW)
9
Crime Equation Anselin (1988)
Spatial Error Model: AR, MA, ARMA (Crime Rate) = a + b (Family Income) + g (Housing Value) + e e = r We + u, or e = q Wu + u SPAR(1) QML Parameter s.e SPMA(1) r q b g a 59.893 5.0994 59.253 5.4177 L
10
Crime Equation Anselin (1988)
QML Estimator: SPLAG(1) vs. SPAR(1) SPAR(1) QML Parameter s.e SPLAG(1) r l b g a 59.893 5.0994 45.080 6.4051 L
11
Spatial Error AR(1) Model Generalized Method of Moments
Moment Functions (Kelejian and Prucha, 1998)
12
Spatial Error AR(1) Model Generalized Method of Moments
Sample Moment Functions
13
Spatial Error AR(1) Model Generalized Method of Moments
Nonlinear GMM: 1 Parameter, 2 Equations
14
Spatial Error AR(1) Model Generalized Method of Moments
Nonlinear GMM: 1 Parameter, 2 Equations
15
Spatial Error AR(1) Model Generalized Method of Moments
Minimum Distance (MD) Estimator Efficient GMM Estimator
16
Spatial Error AR(1) Model Generalized Method of Moments
Estimation of the variance-covariance matrix of moment functions
17
Model Estimation Spatial Error Model
Spatial AR(1) Model Estimate b and r simultaneously: QML Estimate b and r iteratively: GMM/GLS OLS GMM GLS
18
Crime Equation Anselin (1988)
Spatial Error AR(1) Model (Crime Rate) = a + b (Family Income) + g (Housing Value) + e e = r We + u GMM vs. QML Estimator GMM Parameter GMM s.e QML Parameter QML r b g a 60.096 5.3245 59.893 5.0994 Q
19
References H. Kelejian and I. R. Prucha,1998. A Generalized Spatial Two-stage Least Squares Procedure for Estimating a Spatial Autoregressive Model with Autoregressive Disturbance. Journal of Real Estate Finance and Economics, 17, L.F.Lee,2003. Best Spatial Two-stage Least Squares Estimators for a Spatial Autoregressive Model with Autoregressive Disturbances. Econometrics Reviews, 22, L.F. Lee, GMM and 2SLS Estimation of Mixed Regressive Spatial Autoregressive Models. Journal of Econometrics, 137,
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.