Download presentation
Presentation is loading. Please wait.
Published byAlessandra Mattei Modified over 7 years ago
1
Sol-gel rare-earth-doped glasses for solar cells
Francesco Enrichi Research Fellow, Centro Studi e Ricerche Enrico Fermi, Roma (Italy) Vinnmer Marie Curie Incoming Fellow, Luleå University of Technology, Luleå (Sweden) 1
2
Outline Introduction Downconversion in Tb3+/Yb3+ co-doped silica-hafnia glasses and glass ceramics Preliminary results on Ag-exchanged Tb3+/Yb3+ co-doped zirconia glasses and glass ceramics Conclusions and perspectives
3
Silicon solar cells: spectral response
Spectral mismatch 930 nm X. Huang et al. Chem. Soc. Rev., 2013,42,
4
Rare earth ions have suitable energy level structure for energy conversion processes
One UV or blue photon Two red / NIR photons (Yb max. 980 nm) L. Wondraczek et al., Adv. Sci. 2015, 2,
5
Two infrared photons @ 980 nm
Choice of the rare earths Choice of the host material SiO2-HfO2 glass-ceramics SiO2-ZrO2 glass-ceramics Tb3+-Yb3+ Combine the advantages of glasses and the better spectroscopic properties of crystals Silica-based coatings, waveguides, fibers Low phonon energies: HfO2 ~ 700 cm-1 ; ZrO2 ~ 470 cm-1 High refractive index (500 nm): HfO2 ~ 2.13 ; ZrO2 ~ 2.18 One blue 488nm Two infrared 980 nm
6
30 min. @ 1000 °C in order to nucleate HfO2 nanocrystals
Sample preparation SiO2-HfO2 glass and glass-ceramics Thermal treatments TEOS + EtOH + H2O + HCl Si °C after each dip 1h stirring 5 °C after 20 dips HfOCl2 + EtOH Hf GLASS (G) Tb(NO3)3 Yb(NO3)3 RE °C in order to nucleate HfO2 nanocrystals 16h stirring GLASS-CERAMICS (GC) DIP COATING G. Alombert-Goget et al., Proc. SPIE 7598 (2010) 75980P–1/9. G. Alombert-Goget et al., Opt. Mater. 33 (2010) 227–230.
7
Composition: 70% SiO2 – 30% HfO2
SiO2-HfO2 glass and glass-ceramics Samples properties Composition: 70% SiO2 – 30% HfO2 [Tb] : [Yb] = 1 : 4 (best rate from previous studies) [Tb]+[Yb] = 5 ÷ 21 % (previous studies 1 ÷ 5 %) G (900 °C ann.) and GC (1000 °C ann.) samples Layer thickness ~ 0,7 – 0,8 µm G. Alombert-Goget et al., Proc. SPIE 7598 (2010) 75980P–1/9. G. Alombert-Goget et al., Opt. Mater. 33 (2010) 227–230. A. Bouajaj et al., Opt. Mat., 2016,52, 62-68
8
Structural characterization: XRD
G GC * * Phase separation and formation of HfO2 nanocrystals of about 3-4 nm in GC samples * tetragonal HfO2 (ICSD card No 85322)
9
Structural characterization: TEM
9% G 9% GC Phase separation and formation of HfO2 nanocrystals of about 3-4 nm in GC samples A. Bouajaj et al., Opt. Mat., 2016,52, 62-68
10
Optical characterization: PL excitation
11
Optical characterization: PL emission
9% GC Tb3+ emission decrease when Yb3+ is added Indication of energy-transfer
12
𝑷𝑳 𝒅𝒆𝒄𝒓𝒆𝒂𝒔𝒆 = 𝟏 − 𝑷𝑳 𝑻𝒃−𝒀𝒃 𝑷𝑳 𝑻𝒃
Optical characterization: intensity decrease 𝑷𝑳 𝒅𝒆𝒄𝒓𝒆𝒂𝒔𝒆 = 𝟏 − 𝑷𝑳 𝑻𝒃−𝒀𝒃 𝑷𝑳 𝑻𝒃 Sample Glass Glass-ceramics RE 5 34,5 % 40,2 % RE 7 37,9 % 61,8 % RE 9 67,7 %
13
Optical characterization: intensity decrease
9% G and GC Different Yb3+ emission in G and GC samples Indication of different RE environment
14
Optical characterization: energy-transfer
5 𝐷 𝟒 : 𝟏 𝝉 𝒎𝒆𝒂𝒔 = 𝟏 𝝉 𝒓 𝟏 𝝉 𝒏𝒓 Energy-transfer efficiency 𝜼 𝑬𝑻 = 𝑰 𝑻𝒃+𝒀𝒃 𝒅𝒕 𝑰 𝑻𝒃 𝒅𝒕 TOTAL efficiency 𝜼 𝒕𝒐𝒕 = 𝜼 𝑽𝑰𝑺 𝜼 𝑵𝑰𝑹 = 𝜼 𝒓, 𝑻𝒃 (1 - 𝜼 𝑬𝑻 ) + 𝟐 𝜼 𝑬𝑻 ≈ 𝜼 𝑬𝑻
15
Optical characterization
𝟓 𝑫 𝟒 𝟕 𝑭 𝑱 lexc = 355 nm lem = nm Tb3+ emission lifetime decreases when Yb3+ is added Tb3+ emission lifetime decreases more and more with RE content
16
Optical characterization
17
Optical characterization
Maximum efficiency for [Tb+Yb] = 19% ET = 94% EQE = 194%
18
Rate equations: direct transfer vs virtual level transfer
NaYF4:Tb3+,Yb3+ 50SiO2-20Al2O3-27CaF2:Tb3+,Yb3+ Duan et al., J.Appl.Phys., 2011,110, ; Duan et al., Opt. Lett., 2012,37,
19
Optical characterization
Main contribution in our samples seems direct transfer from the 5D4 Tb3+ excited state Possible role of non-accounted processes: back-transfer, excited state absorption, cross-relaxation plus multiphonon ? Direct quantum efficiency measurements could help in better understanding this point
20
Outline Introduction Downconversion in Tb3+/Yb3+ co-doped silica-hafnia glass and glass ceramics Preliminary results on Ag-exchanged Tb3+/Yb3+ co-doped zirconia glass and glass ceramics Conclusions and perspectives
21
Why Ag doping? Ag introduction by ion exchange
Broadband excitation of Er3+ ions 1.54 µm emission
22
Sample preparation SiO2-ZrO2 glass and glass-ceramics
Thermal treatments TEOS + EtOH + H2O + HCl Si 3 °C after each dip 1h stirring Zr propoxide + Acac + EtOH 15 °C after 10 dips Zr GLASS (G) Na Na-Ac + MeOH °C in order to nucleate ZrO2 nanocrystals RE Tb(NO3)3 Yb(NO3)3 GLASS-CERAMICS (GC) 16h stirring DIP COATING
23
Ag+-Na+ ion-exchange Na-doped coating
Molten salt bath 1 mol% of AgNO3 in NaNO3 Ion-exchange process 350 °C \ Ag Na+ Ag+ Followed by thermal annealing in air Ag aggregation 380 °C 440 °C
24
Composition: 70% SiO2 – 30% ZrO2 + additional 10% Na
Samples properties SiO2-ZrO2 glass and glass-ceramics Composition: 70% SiO2 – 30% ZrO additional 10% Na G (700 °C ann.) and GC (1000 °C ann.) samples Layer thickness ~ 0,5 µm G0 / GC0 : [Tb] = 0% [Yb] = 0% G1 / GC1 : [Tb] = 1% [Yb] = 0% G4 / GC4 : [Tb] = 0% [Yb] = 4% G5 / GC5 : [Tb] = 5% [Yb] = 4% + Ag exchange (8 samples) + two annealing T (16 samples) 8 starting samples
25
XRD preliminary check SPIN-COATING deposited samples
rpm - 1 min.
26
RBS measurements (Rutherford Backscattering Spectrometry)
27
RBS spectra comparison
Tb, Yb are detected and follow the expected trend Ag is clearly detected in the exchanged samples
28
Quantitative analysis
Matrix nominal: Si 70, Zr 30, O 200, Na 10 G0: Si 68, Zr 29, O 200, Na 10, Hf 0.25
29
Quantitative analysis
Matrix nominal: Si 70, Zr 30, O 200, Na 10 G0: Si 68, Zr 29, O 200, Na 10, Hf 0.25 G1: Si 65, Zr 29, O 200, Na 10, Hf 0.25, TbYb 0.9
30
Quantitative analysis
Matrix nominal: Si 70, Zr 30, O 200, Na 10 G0: Si 68, Zr 29, O 200, Na 10, Hf 0.25 G1: Si 65, Zr 29, O 200, Na 10, Hf 0.25, TbYb 0.9 G4: Si 65, Zr 29, O 200, Na 10, Hf 0.25, TbYb 4.2
31
Quantitative analysis
Matrix nominal: Si 70, Zr 30, O 200, Na 10 G0: Si 68, Zr 29, O 200, Na 10, Hf 0.25 G1: Si 65, Zr 29, O 200, Na 10, Hf 0.25, TbYb 0.9 G4: Si 65, Zr 29, O 200, Na 10, Hf 0.25, TbYb 4.2 G5: Si 67, Zr 30, O 200, Na 10, Hf 0.25, TbYb 5.3
32
Quantitative analysis
Matrix nominal: Si 70, Zr 30, O 200, Na 10 G0: Si 68, Zr 29, O 200, Na 10, Hf 0.25 G1: Si 65, Zr 29, O 200, Na 10, Hf 0.25, TbYb 0.9 G4: Si 65, Zr 29, O 200, Na 10, Hf 0.25, TbYb 4.2 G5: Si 67, Zr 30, O 200, Na 10, Hf 0.25, TbYb 5.3 GC0: Si 67, Zr 32, O 200, Na 10, Hf 0.25
33
Quantitative analysis
Matrix nominal: Si 70, Zr 30, O 200, Na 10 G0A: Si 68, Zr 29, O 200, Na 10, Hf 0.25, Ag x Thickness obtained by using 1.9 g/cm3 for sol-gel SiO2 280 nm Ag 3 40 nm Ag 5.5
34
Quantitative analysis
Matrix nominal: Si 70, Zr 30, O 200, Na 10 GC0A: Si 67, Zr 32, O 200, Na 10, Hf 0.25, Ag x Thickness obtained by using 1.9 g/cm3 for sol-gel SiO2 140 nm Ag 1 180 nm Ag 2
35
Quantitative analysis
Matrix nominal: Si 70, Zr 30, O 200, Na 10 G5A: Si 70, Zr 29, O 220, Na 0, Hf 0.25, TbYb 5.5, Ag x 280 nm Ag 2.5 80 nm Ag 5 Thickness obtained by using 1.9 g/cm3 for sol-gel SiO2
36
Conclusions and perspectives
Downconversion in Tb3+ + Yb3+ codoped SiO2-HfO2 glasses and glass-ceramics Maximum efficiency 194 % for 19 at.% [Tb+Yb] deeper investigation of the ET process via rate-equation modelling / simulations direct efficiency measurement by an integrating sphere Preparation of Na-doped SiO2-ZrO2 glasses and glass-ceramics Introduction of Ag in the films by Ag+-Na+ ion-exchange process up to 3-5% optimization of ion-exchange conditions (homogeneity, higher Ag concentration) study and optimization of the post-exchange annealing optical characterization
37
CNR-Italy / CNRST-Morocco bilateral project 2014-15
MAECI bilateral project PLESC - Centro Fermi Italy / University of Witwatersrand South Africa CNR-Italy / CNRST-Morocco bilateral project VINNMER Marie Curie Incoming Project - Nano2solar 37
38
CNR-Italy / CNRST-Morocco bilateral project 2014-15
Thank you! MAECI bilateral project PLESC - Centro Fermi Italy / University of Witwatersrand South Africa CNR-Italy / CNRST-Morocco bilateral project VINNMER Marie Curie Incoming Project - Nano2solar 38
40
R 5% 7% 9%
41
Ag doping
42
Choice of rare-earth couples
Donor: absorbs incident photons from the sun and transfer its energy to the acceptor rare‐earth : Pr3+, Tm3+, Tb3+, relatively strong absorption in the blue Er3+ : many mean or weak absorption bands in the UV‐blue‐green Acceptor: emits the photons that will be absorbed by the PV cell Yb3+, single excited state ‐ Emission at ~1000 nm absorbed efficiently by Si solar cell Donor/acceptor Frequency conversion Pr3+/Yb3+ Blue (440nm) → NIR (2 emitted photons: 1000 nm) Tm3+/Yb3+ Blue (478nm) → NIR (2 emitted photons: 1000 nm) Tb3+/Yb3+ Blue (485nm) → NIR (2 emitted photons: 1000 nm) Ce3+/Yb3+ UV‐blue (4f‐5d 330 borate to 450 nm YAG) → NIR Ho3+/Yb3+ Blue (~450 nm)→NIR (2 emitted photons: nm) Er3+/Yb3+ Violet‐Blue‐Green → NIR (2 emitted photons: nm)
44
Energy Spatial extension Filling orbital (optical properties)
Outer electrons (chemical properties) Spatial extension
45
Optical characterization
𝟓 𝑫 𝟒 𝟕 𝑭 𝑱 lexc = 355 nm lem = nm G GC
46
Optical characterization
𝟓 𝑫 𝟒 𝟕 𝑭 𝑱 lexc = 355 nm lem = nm 108 % 110 % 126 % G 125 % 132 % 154 % GC
47
Optical characterization
𝟓 𝑫 𝟒 𝟕 𝑭 𝑱 lexc = 355 nm lem = nm G GC
48
Optical characterization
𝟓 𝑫 𝟒 𝟕 𝑭 𝑱 lexc = 355 nm lem = nm 129 % 138 % 144 % G 145 % 171 % 179 % GC
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.