Presentation is loading. Please wait.

Presentation is loading. Please wait.

Solusi dengan Pendekatan Numerik

Similar presentations


Presentation on theme: "Solusi dengan Pendekatan Numerik"— Presentation transcript:

1 Solusi dengan Pendekatan Numerik

2 Metode Beda Hingga Persamaan Diferensial Parsial

3 Contoh Aplikasi untuk Gelombang Kinematik
Persamaan Diferensial Parsial Euler-Backward Difference

4 2D Kinematic Wave Equations and Discretization
Euler-Backward Difference Method

5 Metode Volume Hingga In a control volume or a cell, the integral of mass change must be equal to the boundary line integral of flux entering and leaving the cell in a time interval.

6 The Finite Volume Methods
Let apply the above equation in a finite volume cell below. Vector n is the inward normal vector along the cell boundary. cell

7 The nodes are indexed by j for horizontal or x axis and k for vertical or y axis. The finite volume formulation can be approximated as follows. The above simple finite volume formulation ends to a central difference finite difference scheme.

8 If we account the more outer ring node values for interpolating the q value when integrating the flux the scheme can be in the following form.

9 This big scheme can be simplified as follows

10 Metode Elemen Hingga


Download ppt "Solusi dengan Pendekatan Numerik"

Similar presentations


Ads by Google