Download presentation
1
Scaling
2
Contents Wafer size scaling Chip size scaling Wafer thickness scaling
Projection lithography Etch scaling (from wet to dry) Selectivity scaling (CMOS gate) Gate oxide scaling Junction depth scaling Thermal budget scaling (RTA) Film thickness scaling (MLM, constant AR Fab size scaling Fab cost scalingLinewidth scaling
3
Wafer thickness scaling
Wafer size scaling 525 µm 625 µm 725 µm 775 µm ?? 925 µm Wafer thickness scaling
4
Wafer size and demand Doering, R. & Y. Nishi: Limits of integrated circuit manufacturing, Proc. IEEE Vol. 89 (2001) p. 375
5
New prediction
7
Useful chips & edge exclusion
8
Chip scaling and wafer scaling
9
Chip size vs. Yield Good Money chips USD 255 1020 98 1176 32 1696
6 1632 4 1668 EE141 © Digital Integrated Circuits 2nd Introduction 1 Digital Integrated Circuits A Design Perspective Introduction Jan M. Rabaey Anantha Chandrakasan.
10
Optical projection lithography
Sources of radiation (UV 365 nm-436 nm, DUV 193 nm-248 nm, EUV, X-rays, electrons, ions) Optical system I (lenses, mirrors) Mask (pattern) Optical system II Numerical aperture NA=sin Imaging medium (resist) Wafer (with patterns) Wafer stage (alignment mechanism)
11
Reduction factor, often 5X
Mask 1 µm minimum linewidth 5X optical reduction 0.2 µm on wafer
12
Projection litho performance
13
Table 10.1: Linewidth scaling of CMOS
Wavelength Aperture k factor Linewidth DoF =436 nm NA=0.38 k1= µm 1.5µm =365 nm NA=0.48 k1= µm 0.8 µm =248 nm NA=0.60 k1= µm 0.35 µm =248 nm NA=0.65 k1= µm 0.30 µm Because depth of focus (DoF) gets smaller, CMP planarization becomes more important all the time.
14
Projection lithography scaling
Lin, MEMS2010
15
Photomask cost scaling
Min LW Cost 3 µm 300 euros 1 µm 500 euros 1 µm euros, quality checked Mask LW Wafer LW Cost 1 µm µm euros 0.5 µm 0.1 µm euros 200 nm 40 nm euros 100 nm 20 nm euros 1X litho 5X reduction litho
16
Refresher: etch profiles
Wet etching isotropic profile Plasma etching anisotropic profile
17
Wet etched profile: 1 µm thick film
18
Plasma etched profile: 1 µm film
19
Wet etched profile: 200 nm film
20
Plasma etched profile: 200 nm film
21
Etch back Conformal deposition
Anisotropic etch 200 nm/min for 1 minute. 400 nm 200 nm
22
Etch time, end point and overetch
100 nm 300 nm 100 % conformal deposition. 200 nm Etch rate 100 nm/min. Anisotropic etch. Etch time 1 min. spacers formed Etch time 3 minutes; i.e. 2 minutes overetch (200%). Clears spacers.
23
CMOS gate etch selectivity
CMOS linewidth: 5 µm Polysilicon gate: 500 nm thick Gate oxide thickness (LW/50) = 100 nm Etch selectivity poly:oxide = 10:1 Overetch = 50 % Oxide loss = nm Oxide loss = % of original thickness CMOS linewidth: 1 µm Polysilicon gate: 300 nm thick Gate oxide thickness (LW/50) = 20 nm Overetch = 50 % Oxide loss = same % loss as in above, Calculate etch selectivity poly:oxide needed to achieve this !
25
CMOS linewidth: 5 µm Polysilicon gate: 500 nm thick Gate oxide thickness (LW/50) = 100 nm Etch selectivity poly:oxide = 10:1 Presume: 500 nm/min poly 50 nm/min oxide Overetch = 50 % 0.5 min oxide etched Oxide loss = 25 nm Oxide loss = 25% of original thickness CMOS linewidth: 1 µm Polysilicon gate: 300 nm thick Gate oxide thickness (LW/50) = 20 nm Overetch = 50 % Oxide loss = same % loss as in above, Calculate etch selectivity poly:oxide needed! Presume 300 nm/min 50% oe is 30 secs 5 nm loss allowed 10 nm/min oxide rate 30:1 selectivity needed
26
Gate oxide scaling Rule of thumb (valid for 1970-2000):
linewith/50 = gate oxide thickness 5 µm 100 nm 1 µm 20 nm 0.5 µm 10 nm 0.2 µm 4 nm 0.1 µm 2 nm HERE WE RUN INTO PROBLEMS…
27
High-k dielectrics ZrO2 HfO2 High dielectric constants of
ca. 20 (vs. 4 for SiO2) Deposited by ALD. SiO2 formed in the first steps of ALD, because H2O used as a precursor.
28
Equivalent oxide thickness
Example: 6 nm ZrO2: EOT = (4/23)*6 nm + 0 nm = 1 nm 1 nm SiO2 + 6 nm ZrO2: EOT = (4/23)*6 nm + 1 nm = 2 nm
29
Junction depth scaling
Thermal diffusion vs. ion implantation 300 nm deep 300 nm sideways 300 nm deep 100 nm sideways
30
CMOS S/D scaling 5 µm gate length 0.5 µm S/D diffusion depth
4 µm Leffective 1.5 µm gate length 0.5 µm S/D diffusion depth 0.5 µm Leffective
31
S/D scaling trick #1: implant energy down
e.g. 50 keV B+ e.g. 10 keV B+ or 50 keV BF2+ Sideways spreading is 1/3 of vertical depth, for both.
32
S/D scaling trick #2: spacers
Anisotropic etching of a conformal film Ion implantation Leff = Lithographic !
33
Spacers and LDDs extended
Energy X Energy scaled down narrow spacer enough.
34
Thermal budget scaling & RTA
Ion implantation always requires a high temperature annealing step to get rid of implant damage. I/I damage anneal time is short compared with diffusion because only local movement of atoms needed, e.g. to move an interstitial atom into a lattice site. As S/D junction needs to be shallower, anneal thermal budget (T,t) needs to be scaled down. E.g. 1100oC & 30 secs 1100oC & 15 secs 1050oC & 15 secs but then 1200oC & 1 s 1200oC & 0.1 sec
35
Sheet resistance scaling
Rs /T I/I dose constant 1015 cm-2 Use simple box approximation in transforming dose to concentration S/D 1 µm deep 1019 cm-3 Rs = 0.01 Ω-cm/10-4 cm = 100 Ω S/D 0.1 µm 1020 cm-3 Ω-cm/10-5 cm = 100 Ω
36
Aspect ratio scaling Actually, aspect ratio (height:width) does NOT scale; it has remained more or less 1:1 for decades.
37
8-level IC metallization
38
Fab cost scaling 1957 0.2 M$ 1967 2.5 M$ 1977 10 M$ 1987 100 M$
2017 ?
39
Fab size scaling Year Wafer size LW WPM* 1970 3” 10 µm 1000
mm 2 µm 5000 mm 0.8 µm 10000 mm µm 20000 mm 32 nm 50000 mm 11 nm 70000 * Wafer starts per month
40
Wafer specifications for CMOS
Wafer size mm Thickness µm TTV µm Warp µm Flatness <3 <2 < µm Oxygen pmma OISF <10 none none cm-2 Particles #/wafer Particle size µm Metal impurities * atoms/cm2
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.