Presentation is loading. Please wait.

Presentation is loading. Please wait.

1.

Similar presentations


Presentation on theme: "1."— Presentation transcript:

1 1

2 2

3 3

4 4

5 History of Electron Accelerators: Livingston Plot
Rasmus Ischebeck 5

6 Applications of Accelerators
Rasmus Ischebeck

7 How to Accelerate Charged Particles
Assume: an ultrarelativistic particle of charge e moving along the z axis accelerated by a plane electromagnetic wave that propagates at an angle ϑ to the z axis k ϑ e- λ Rasmus Ischebeck

8 How to Accelerate Charged Particles
Then: Position of the electron k ϑ e- λ Electric field Energy gradient Rasmus Ischebeck

9 Lawson Woodward Theorem
Every wave in far field can be written as a superposition of plane waves The Lawson-Woodward Theorem states: the total acceleration of ultrarelativistic particles by far-field electromagnetic waves is zero Need near-field structures electron Woodward, J. IEE 93 (1947) Lawson, IEEE Trans. Nucl. Sci. 26 (1979) Palmer, Part. Accel. 11 (1980) electromagnetic wave Rasmus Ischebeck

10 RF Acceleration RF Acceleration electrical field Cu
Using a resonant cavity at radio frequencies (RF) (∼GHz) Electromagnetic field provided by external source (e.g. klystron) electron Resonating RF Cavity Travelling Wave Structure 11.4 GHz 2π/3 Mode Eacc ≥ 50 MV/m Rasmus Ischebeck

11 Limits to the Accelerating Field
Normal-conducting accelerators Breakdown on the surface Superconducting accelerators Critical magnetic field Rasmus Ischebeck

12 Possibilities for Accelerating Structures
max. Field (V/m) Structure Power Sources electron beams: klystrons electron beams: klystrons or integrated structure Superconducting 5·107 solid state Metallic 2·108 solid state Dielectric 109 laser electron beams Plasma ≥1011 laser electron beams Plus: Inverse FEL, disposable structures, excited atoms, muon colliders Rasmus Ischebeck

13 > Transformation of far-field into accelerating field
Metallic Structures > Transformation of far-field into accelerating field Rasmus Ischebeck

14 Laser-Based Acceleration
Rasmus Ischebeck Laser-Based Acceleration

15 Laser Acceleration (1961) Koichi Shimoda, Applied Optics 1 (1), 33 (1961) Rasmus Ischebeck 15

16 Laser as a source of electromagnetic fields
1.  Smaller/less expensive than RF. 2.  Energy efficient (near 50%). 3.  High repetition rate (1 to 100 MHz). 4.  Large electric fields (GV/m). Solid-state laser RF Klystron Rasmus Ischebeck Bob Byer 16

17 Dielectric Accelerator Structures
> Using much higher frequencies: THz to optical > Using dielectrics (e.g. SiO2) > Advantages: higher damage threshold Higher accelerating fields, up to ~GV/m > Generate the electromagnetic field > Cherenkov radiation from an electron beam > Laser > Confine the field > Photonic band gap 8 Rasmus Ischebeck 17

18 Planar Structures Elliptical Pillars Rectangular Pillars
Laser Rectangular Pillars Laser Double Slab Grating Laser e- e- e- Laser Laser Buried Grating Laser Asymmetric Grating Reverse Slab Grating Laser e- e- e- Laser Laser Laser Rasmus Ischebeck Ken Leedle 18

19 Planar Structures: Measurements
Rasmus Ischebeck Joel England 19

20 Circular Structures > Experiment at MIT Franz Kärtner
Rasmus Ischebeck Franz Kärtner

21 > Structure geometry:
Circular Structures > Structure geometry: electron beam E metal dielectric d a Rasmus Ischebeck Franz Kärtner

22 Circular Structures: Modeling
> Analytical solution for the electromagnetic fields: 8 > E J (r r)e i(kz-!t) , r < a < > E = z > J (r b) : > ei(kz-!t), E J0(r2r) - 0 2 Y0(r2r) a < r < b 2 Y0(r2b) 8 > > k i E J (r r)e i(kz-!t) , r < a > > < r 1 1 1 Er = > > > k J (r b) > i E J (r r) - : 0 2 Y (r r) e i(kz-!t) , a < r < b r2 2 2 Y0(r2b) 2 8 ! >i > E J (r r)e i(kz-!t) , r < a > < r c 2 1 1 1 B< = > > > ! J (r b) : i ✏ E J (r r) - 0 2 Y (r r) e i(kz-!t) , a < r < b r2c2 r 2 2 Y0(r2b) 2 Rasmus Ischebeck Max Kellermeier

23 Tool to Calculate Beam Propagation
Rasmus Ischebeck Max Kellermeier

24 Circular Structures: Measurements
1 Measured Modeled Measured Modeled 0.8 Counts (Arb.) 0.6 0.4 0.2 Energy (keV) (a) 45 50 Energy (keV) (b) 70 75 Figure 4: Measured (black) and modeled (red) energy spec- trum with THz (a) off and (b) on at a gun voltage of 59 kV. Rasmus Ischebeck Nanni et al., Proceedings of IPAC

25 Towards 3-Dimensional Structures: Photonic Crystals
periodic electromagnetic media 1887 1987 1-D 2-D 3-D periodic in one direction periodic in two directions periodic in three directions (need a more complex with photonic band gaps: “optical insulators” topology) Steven G. Johnson 9 Rasmus Ischebeck 25

26 Photonic Band Gap Structures
12 Rasmus Ischebeck Chris Sramek 26

27 Installation of a Test Chamber in SwissFEL
Rasmus Ischebeck

28 Planned Experimental Setup in SwissFEL
> Goal: Acceleration by 1 MeV Laser Profile monitor Quadrupole magnets Electron beam from SwissFEL Accelerating structure Magnetic spectrometer Paraboloid mirror Rasmus Ischebeck

29 Focusing of the Electron Beam
90 80 70 60 50 40 30 20 10 x y β-function (m) 2 4 6 8 10 s [m] 12 14 16 18 2 4 6 8 10 12 14 16 18 Rasmus Ischebeck Eduard Prat 29

30 Design of Interaction Chamber
> Design in progress… Rasmus Ischebeck Adriano Zandonella, Goran Kotrle, Eugenio Ferrari 30

31 Plasma Wakefield Acceleration

32 > Linear plasma wake:
Plasma Wakes - Theory > Unlike electromagnetic waves in vacuum, plasma wakes can have a longitudinal electric field + + + + + + + + + – + + – + – + + + + – – + + + – + + + – – + + > Tajima & Dawson, PRL, 43, 267(1979) – + – + + – – + + + + – – + + + + + – + + + – – + + + + + + + + + + –– – + + + + – + + E E E E E E > Linear plasma wake: > Limit: Rasmus Ischebeck 32

33 > Above this limit: non-linear wakes, “Blow-out regime”
Plasma Wakes - Theory > Above this limit: non-linear wakes, “Blow-out regime” > Fields can be calculated only with numerical methods > Typical wavelength: 50 µm > Accelerating fields up to 50 GV/m Rasmus Ischebeck Miaomiao Zhou 33

34 Plasma Wakes - Reality Rasmus Ischebeck 34

35 > Incoming energy: 42 GeV > Peak energy: 85±7 GeV
Energy Doubling > Plasma length: 85 cm > Density: 2.7•1023 m−3 > Incoming energy: 42 GeV > Peak energy: 85±7 GeV Rasmus Ischebeck 35

36 Measurement of Electromagnetic Fields
Rasmus Ischebeck

37 Measured Electromagnetic Fields
Rasmus Ischebeck

38 Recent Experiments at PSI
Rasmus Ischebeck

39 Generation of a Density Ramp
Blade 1.1mm Rasmus Ischebeck

40 Charge Measurement Rasmus Ischebeck Andreas Adelmann, Nick Sauerwein, Benedikt Herrmann 40

41 Livingston Plot 44 Rasmus Ischebeck 41

42 An Unfair Comparison 44 Rasmus Ischebeck 42

43 From Accelerating Fields to Accelerators
There is More to Accelerating Structures than the Accelerating Field >Power sources >Beam loading >Emittance preservation > Non-linear transverse forces > Wakefields There is Much More to an Accelerator than Accelerating Structures >Particle sources (injectors) >Bend magnets for storage rings >Focusing, beam dynamics >Detectors Rasmus Ischebeck 43

44 Instrumentation and Acceleration Research at PSI
> Special Thanks to: Adriano Zandonella Andreas Adelmann Benedikt Herrmann Bob Byer Chris Sramek Eduard Prat Eugenio Ferrari Franz Kärtner Goran Kotrle Joel England Ken Leedle Malte Kaluza Max Kellermeier Miaomiao Zhou Nick Sauerwein > This presentation is available at © 2017 Paul Scherrer Institut Rasmus Ischebeck 44


Download ppt "1."

Similar presentations


Ads by Google