Presentation is loading. Please wait.

Presentation is loading. Please wait.

Correlation and Linear Regression

Similar presentations


Presentation on theme: "Correlation and Linear Regression"— Presentation transcript:

1 Correlation and Linear Regression
Chapter 13 McGraw-Hill/Irwin Copyright © 2012 by The McGraw-Hill Companies, Inc. All rights reserved. 1

2 Learning Objectives LO1 Define the terms dependent and independent variable. LO2 Calculate, test, and interpret the relationship between two variables using the correlation coefficient. LO3 Apply regression analysis to estimate the linear relationship between two variables LO4 Interpret the regression analysis. LO5 Evaluate the significance of the slope of the regression equation. LO6 Evaluate a regression equation to predict the dependent variable. LO7 Calculate and interpret the coefficient of determination. LO8 Calculate and interpret confidence and prediction intervals. 13-2 2

3 Regression Analysis - Introduction
Recall in chapter 4 we used Applewood Auto Group data to show the relationship between two variables using a scatter diagram. The profit for each vehicle sold and the age of the buyer were plotted on an XY graph The graph showed that as the age of the buyer increased, the profit for each vehicle also increased This idea is explored further here. Numerical measures to express the strength of relationship between two variables are developed. In addition, an equation is used to express the relationship between variables, allowing us to estimate one variable on the basis of another. EXAMPLES Does the amount Healthtex spends per month on training its sales force affect its monthly sales? Is the number of square feet in a home related to the cost to heat the home in January? In a study of fuel efficiency, is there a relationship between miles per gallon and the weight of a car? Does the number of hours that students studied for an exam influence the exam score? 13-3 3

4 Dependent Versus Independent Variable
LO1 Define the terms dependent and independent variable. Dependent Versus Independent Variable The Dependent Variable is the variable being predicted or estimated. The Independent Variable provides the basis for estimation. It is the predictor variable. Which in the questions below are the dependent and independent variables? Does the amount Healthtex spends per month on training its sales force affect its monthly sales? Is the number of square feet in a home related to the cost to heat the home in January? In a study of fuel efficiency, is there a relationship between miles per gallon and the weight of a car? Does the number of hours that students studied for an exam influence the exam score? 13-4 4

5 Scatter Diagram Example
LO1 Scatter Diagram Example The sales manager of Copier Sales of America, which has a large sales force throughout the United States and Canada, wants to determine whether there is a relationship between the number of sales calls made in a month and the number of copiers sold that month. The manager selects a random sample of 10 representatives and determines the number of sales calls each representative made last month and the number of copiers sold. 13-5 5

6 The Coefficient of Correlation, r
LO2 Calculate, test, and interpret the relationship between two variables using the correlation coefficient. The Coefficient of Correlation, r The Coefficient of Correlation (r) is a measure of the strength of the relationship between two variables. It shows the direction and strength of the linear relationship between two interval or ratio-scale variables It can range from to Values of or indicate perfect and strong correlation. Values close to 0.0 indicate weak correlation. Negative values indicate an inverse relationship and positive values indicate a direct relationship. 13-6 6

7 Correlation Coefficient - Interpretation
LO2 Correlation Coefficient - Interpretation . 13-7 7

8 Correlation Coefficient - Example
LO2 Correlation Coefficient - Example Using the Copier Sales of America data which a scatterplot is shown below, compute the correlation coefficient and coefficient of determination. Using the formula: . 13-8 8

9 Correlation Coefficient - Example
LO2 Correlation Coefficient - Example What does correlation of mean? First, it is positive, so we see there is a direct relationship between the number of sales calls and the number of copiers sold. The value of is fairly close to 1.00, so we conclude that the association is strong. However, does this mean that more sales calls cause more sales? No, we have not demonstrated cause and effect here, only that the two variables—sales calls and copiers sold—are related. 13-9 9

10 Testing the Significance of the Correlation Coefficient
LO2 Testing the Significance of the Correlation Coefficient H0:  = 0 (the correlation in the population is 0) H1:  ≠ 0 (the correlation in the population is not 0) Reject H0 if: t > t/2,n-2 or t < -t/2,n-2 13-10 10

11 H0:  = 0 (the correlation in the population is 0)
LO2 Testing the Significance of the Correlation Coefficient – Copier Sales Example H0:  = 0 (the correlation in the population is 0) H1:  ≠ 0 (the correlation in the population is not 0) Reject H0 if: t > t/2,n-2 or t < -t/2,n-2 t > t0.025,8 or t < -t0.025,8 t > or t < 13-11 11

12 LO2 Testing the Significance of the Correlation Coefficient – Copier Sales Example Computing t, we get The computed t (3.297) is within the rejection region, therefore, we will reject H0. This means the correlation in the population is not zero. From a practical standpoint, it indicates to the sales manager that there is correlation with respect to the number of sales calls made and the number of copiers sold in the population of salespeople. 13-12 12

13 LO3 Apply regression analysis to estimate the linear relationship between two variables.
In regression analysis we use the independent variable (X) to estimate the dependent variable (Y). The relationship between the variables is linear. Both variables must be at least interval scale. The least squares criterion is used to determine the equation. REGRESSION EQUATION An equation that expresses the linear relationship between two variables. LEAST SQUARES PRINCIPLE Determining a regression equation by minimizing the sum of the squares of the vertical distances between the actual Y values and the predicted values of Y. 13-13 13

14 Linear Regression Model
LO3 Linear Regression Model . 13-14 14

15 Regression Analysis – Least Squares Principle
LO3 Regression Analysis – Least Squares Principle The least squares principle is used to obtain a and b. 13-15 15

16 Computing the Slope of the Line and the Y-intercept
. 13-16 16

17 Regression Equation - Example
LO3 Regression Equation - Example Recall the example involving Copier Sales of America. The sales manager gathered information on the number of sales calls made and the number of copiers sold for a random sample of 10 sales representatives. Use the least squares method to determine a linear equation to express the relationship between the two variables. What is the expected number of copiers sold by a representative who made 20 calls? 13-17 17

18 Finding and Fitting the Regression Equation - Example
LO4 Interpret the regression analysis. Finding and Fitting the Regression Equation - Example Step 1 – Find the slope (b) of the line Step 2 – Find the y-intercept (a) 13-18 18

19 Testing the Significance of the Slope – Copier Sales Example
LO5 Evaluate the significance of the slope of the regression equation. Testing the Significance of the Slope – Copier Sales Example H0: β = 0 (the slope of the linear model is 0) H1: β ≠ 0 (the slope of the linear model is not 0) Reject H0 if: t > t/2,n-2 or t < -t/2,n-2 t > t0.025,8 or t < -t0.025,8 t > or t < . 13-19 19

20 Testing the Significance of the Slope – Copier Sales Example
Compute the t statistic and make a conclusion: Conclusion: The slope of the equation is significantly different from zero. 13-20 20

21 The Standard Error of Estimate
LO5 The Standard Error of Estimate The standard error of estimate measures the scatter, or dispersion, of the observed values around the line of regression Formulas used to compute the standard error: . 13-21 21

22 Standard Error of the Estimate - Example
LO5 Standard Error of the Estimate - Example Recall the example involving Copier Sales of America. The sales manager determined the least squares regression equation is given below. Determine the standard error of estimate as a measure of how well the values fit the regression line. 13-22 22

23 Standard Error of the Estimate - Excel
LO5 Standard Error of the Estimate - Excel 13-23 23


Download ppt "Correlation and Linear Regression"

Similar presentations


Ads by Google