Download presentation
Presentation is loading. Please wait.
1
Pairing Correlation in neutron-rich nuclei
K. Hagino (Tohoku University) H. Sagawa (University of Aizu) 11Li Motivation: BCS-BEC crossover Three-body model with density-dependent delta interaction Ground state properties of 11Li and 6He Relation to BCS-BEC crossover Di-neutron correlation in 8He and in heavier nuclei Parametrization of density-dependent pairing interaction Summary
2
Introduction: BCS-BEC crossover
Cooper pair wave function: crossover BEC (strong coupling) BCS (weak coupling) Correlation in r space (small coherence length) Correlation in p space (large coherence length) x x
3
Spatial structure of neutron Cooper pair in infinite matter
BCS Crossover region Implication to finite nuclei? Relation to di-neutron correlation? M. Matsuo, PRC73(’06)044309
4
Three-body model with density-dependent delta force
G.F. Bertsch and H. Esbensen, Ann. of Phys. 209(’91)327 H. Esbensen, G.F. Bertsch, K. Hencken, Phys. Rev. C56(’99)3054 11Li, 6He n r1 VWS Density-dependent delta-force VWS r2 core n Diagonalization:
5
Density-dependent delta interaction
H. Esbensen, G.F. Bertsch, K. Hencken, Phys. Rev. C56(’99)3054 Two neutron system in the vacuum: Two neutron system in the medium: : adjust so that S2n can be reproduced
6
Two-particle wave functions (J=0 pairs)
Hamiltonian diagonalization Continuum: box discretization Energy cut-off:
7
Two-particle density for the ground state strong di-neutron
correlation 11Li r q12 6He K.H. and H. Sagawa, PRC72(’05)044321
8
Geometry of Borromean nuclei
“experimental” mean opening angle (note) forbidden transition H. Esbensen, K.H., P. Mueller, and H. Sagawa, PRC76(’07)924302
9
Response to the dipole field:
Dipole excitations Response to the dipole field: Smearing: K.H. and H. Sagawa,PRC76(’07)047302
10
Dipole excitations K.H. and H. Sagawa,PRC76(’07)047302
11
Geometry of Borromean nuclei
“experimental” mean opening angle (note) forbidden transition H. Esbensen, K.H., P. Mueller, and H. Sagawa, PRC76(’07)924302 or also from HBT-type 2n correlation study
12
Geometry of Borromean nuclei
11Li “experimental” mean opening angle B(E1) matter radius or HBT 6He (11Li) (6He) K.H. and H. Sagawa,PRC76(’07)047302
13
Relation to BCS-BEC crossover
11Li probing the behaviour of 2n-wf at several densities
14
K.H., H. Sagawa, J. Carbonell, and P. Schuck,
PRL99(’07)022506
15
11Li good correspondence Nulcear Matter Calc.
K.H., H. Sagawa, J. Carbonell, and P. Schuck, PRL99(’07) M. Matsuo, PRC73(’06)044309
16
2-neutron rms distance Matter Calc. 11Li cf. Free n-n system
M. Matsuo, PRC73(’06)044309 cf. Free n-n system virtual state around zero energy < r > ~ 12 fm (Nijmegen potential)
17
Di-neutron correlation in 8He
a + 4n model Vna: Woods-Saxon vnn: density-dependent contact force Hartree-Fock-Bogoliubov (HFB) + PNP (VBP) two-body correlation density 4 particle density (dineutron-dineutron configuration)
18
Di-neutron correlation in 8He
two-body correlation density 4 particle density (dineutron-dineutron configuration) r q12 r q12 r K.H. and N. Takahashi, in preparation
19
Surface di-neutron condensation?
canonical basis representation (wf for condensation) 8He (core + 4n) 84Ni (WS-HFB) (contribution from v2 < 0.9)
20
Density-dependent pairing interaction?
“standard” parametrization: : volume pairing fm-3 : surface pairing fm-3 : mix pairing another parametrization? I=(N-Z)/(N+Z) J. Margueron, H. Sagawa, and K.H., arXiv:
21
Ec=40 MeV hs as hn an bare screened J. Margueron, H. Sagawa, and K.H., arXiv:
22
isotope dependence of pairing properties in finite
nuclei (HFB calculation)? J. Margueron, H. Sagawa, and K.H., arXiv:
23
Summary Application of three-body model to Borromean nuclei
Di-neutron wave function for each R Close correspondence to the matter calculations BCS/BEC crossover phenomenon Concentration of a Cooper pair on the nuclear surface Also in other superfulid nuclei (universality) very different from the conventional view of pairing 6He, 16C, 24O cf. see also N. Pillet et al., PRC76(’07)024310
24
Gogny HFB calculations
N. Pillet, N. Sandulescu, and P. Schuck, PRC76(’07)024310
25
charge radius 11Li 1.175(124) fm2 (exp) 0.789 fm2 (3body model) 6He
H. Esbensen, K.H., P. Mueller, and H. Sagawa, PRC76(’07)924302
26
for 84Ni contribution from the “core” (v2 > 0.9)
q (deg) r (fm) contribution from the “core” (v2 > 0.9) contribution from the valence (v2 < 0.9)
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.