Presentation is loading. Please wait.

Presentation is loading. Please wait.

PHL424: Nuclear angular momentum

Similar presentations


Presentation on theme: "PHL424: Nuclear angular momentum"β€” Presentation transcript:

1 PHL424: Nuclear angular momentum
electron orbitals electrons in an atom n=1 n=3 n=2 quantum numbers: n (principal) ,2,3,… β„“ (orbital angular momentum) β†’ n-1 m (magnetic) β„“ ≀ m ≀ +β„“ s (spin) ↑↓ or +Β½Δ§ -Β½Δ§ classical analogy orbital angular momentum β„“ spin s sun ≑ nucleus earth ≑ electron protons and neutrons have β„“ and s total angular momentum: 𝑗 = β„“ + 𝑠 total nuclear spin: 𝐼= 𝑗 electron is structure less and hence can not rotate spin s is a quantum mechanical concept

2 Nuclear spin quantum number
protons and neutrons have orbital angular momentum β„“ and spin s total angular momentum: 𝑗 = β„“ + 𝑠 total nuclear spin: 𝐼= 𝑗 𝐼= 𝑗 1 + 𝑗 2 +β‹― 𝑗 𝑛 , 𝑗 1 + 𝑗 2 +β‹― 𝑗 𝑛 βˆ’1,β‹―, 𝑗 1 βˆ’ 𝑗 2 βˆ’β‹―βˆ’ 𝑗 𝑛 quantum mechanics

3 Nuclear spin quantum number
protons and neutrons have orbital angular momentum β„“ and spin s total angular momentum: 𝑗 = β„“ + 𝑠 total nuclear spin: 𝐼= 𝑗 𝐼= 𝑗 1 + 𝑗 2 +β‹― 𝑗 𝑛 , 𝑗 1 + 𝑗 2 +β‹― 𝑗 𝑛 βˆ’1,β‹―, 𝑗 1 βˆ’ 𝑗 2 βˆ’β‹―βˆ’ 𝑗 𝑛 quantum mechanics 1H = 1 proton, so I = Β½ 2H = 1 proton and 1 neutron, so I = 1 or 0 For larger nuclei, it is not immediately evident what the spin should be as there are a multitude of possible values. mass number number of protons number of neutrons spin (I) example even 16O odd integer (1,2,…) 2H half-integer ( 1 2 , 3 2 ,β‹―) 13C 15N

4 Nuclear spin quantum number
The magnitude is given by 𝐿=ℏ 𝐼 𝐼+1 The projection on the z-axis (arbitrarily chosen), takes on discretized values according to m, where π‘š=βˆ’πΌ, βˆ’πΌ+1, βˆ’πΌ+2, β‹―, +𝐼

5 Parity wave – particle duality: Ξ¨(x) = Ξ¨(-x) β†’ parity = even (+)
photoelectric effect wave function Ξ¨(x) x Ξ¨(x) = Ξ¨(-x) β†’ parity = even (+) β„“ = 0, 2, 4, … even Ξ¨(x) = -Ξ¨(-x) β†’ parity = odd (-) β„“ = 1, 3, 5, … odd

6 Magnetic moment πœ‡ =πΌβˆ™π΄ A 𝑣= 2πœ‹π‘Ÿ 𝑑 β†’ 𝑑= 2πœ‹π‘Ÿ 𝑣 β„“= π‘š 𝑒 π‘£βˆ™π‘Ÿ 𝐼= 𝑒 𝑑
𝑣= 2πœ‹π‘Ÿ 𝑑 β†’ 𝑑= 2πœ‹π‘Ÿ 𝑣 β„“ I β„“= π‘š 𝑒 π‘£βˆ™π‘Ÿ 𝐼= 𝑒 𝑑 = π‘’βˆ™π‘£ 2πœ‹π‘Ÿ πœ‡= π‘’βˆ™π‘£ 2πœ‹π‘Ÿ βˆ™πœ‹ π‘Ÿ 2 = π‘’βˆ™π‘£βˆ™π‘Ÿ 2 πœ‡= π‘’βˆ™π‘£βˆ™π‘Ÿ 2 βˆ™ π‘š 𝑒 π‘£βˆ™π‘Ÿ π‘š 𝑒 π‘£βˆ™π‘Ÿ = π‘’βˆ™β„“ 2 π‘š 𝑒 πœ‡ π΅π‘œβ„Žπ‘Ÿ = π‘’βˆ™β„ 2 π‘š 𝑒 πœ‡ β„“ = πœ‡ 𝐡 βˆ™ β„“ ℏ electron orbital magnetic moment πœ‡ β„“ = πœ‡ 𝑁 βˆ™ β„“ ℏ πœ‡ 𝑁 = π‘’βˆ™β„ 2 π‘š 𝑝 proton orbital magnetic moment

7 Magnetic moment πœ‡ β„“ = πœ‡ 𝐡 βˆ™ β„“ ℏ πœ‡ 𝑠 = βˆ’2.0023βˆ™πœ‡ 𝐡 βˆ™ 𝑠 ℏ
electron orbital magnetic moment πœ‡ 𝑠 = βˆ’2.0023βˆ™πœ‡ 𝐡 βˆ™ 𝑠 ℏ electron spin magnetic moment (Dirac equation) πœ‡ 𝑠 = βˆ™πœ‡ 𝑁 βˆ™ 𝑠 ℏ proton spin magnetic moment πœ‡ 𝑠 = βˆ’ βˆ™πœ‡ 𝑁 βˆ™ 𝑠 ℏ neutron spin magnetic moment Why has a neutron a magnetic moment when it is uncharged? u-quark: 𝑒 d-quark: βˆ’ 1 3 𝑒 neutrons and protons are not elementary particles internal structure: they have charges. proton +1e neutron 0e πœ‡ 𝑠 𝐻 = 5.59βˆ’3.83 βˆ™πœ‡ 𝑁 βˆ™ 1 2 = πœ‡ 𝑁 =0.8574βˆ™ πœ‡ 𝑁 (experiment)

8 Magnetic resonance imaging (MRI)
πœ‡ 𝑠 = βˆ™πœ‡ 𝑁 βˆ™ 𝑠 ℏ proton spin magnetic moment πœ‡ 𝐼 =π›Ύβˆ™πΌ gyromagnetic ratio 𝛾=π‘”βˆ™ πœ‡ 𝑁 ℏ =π‘”βˆ™47.89βˆ™ 𝑇 βˆ’1 𝑠 βˆ’1 proton 𝑔-factor: , spin I: Β½ Δ§ proton in magnetic field energy difference between states βˆ†πΈ=β„Žβˆ™πœˆ Δ𝐸=2βˆ™ πœ‡ 𝐼 βˆ™ 𝐡 0 𝜈= 𝛾 2πœ‹ βˆ™ 𝐡 Larmor frequency 𝛾 2πœ‹ = 𝑀𝐻𝑧 𝑇 for proton Larmor frequency low energy high energy low energy high energy


Download ppt "PHL424: Nuclear angular momentum"

Similar presentations


Ads by Google