Download presentation
Presentation is loading. Please wait.
1
PHL424: Nuclear angular momentum
electron orbitals electrons in an atom n=1 n=3 n=2 quantum numbers: n (principal) ,2,3,β¦ β (orbital angular momentum) β n-1 m (magnetic) β β€ m β€ +β s (spin) ββ or +Β½Δ§ -Β½Δ§ classical analogy orbital angular momentum β spin s sun β‘ nucleus earth β‘ electron protons and neutrons have β and s total angular momentum: π = β + π total nuclear spin: πΌ= π electron is structure less and hence can not rotate spin s is a quantum mechanical concept
2
Nuclear spin quantum number
protons and neutrons have orbital angular momentum β and spin s total angular momentum: π = β + π total nuclear spin: πΌ= π πΌ= π 1 + π 2 +β― π π , π 1 + π 2 +β― π π β1,β―, π 1 β π 2 ββ―β π π quantum mechanics
3
Nuclear spin quantum number
protons and neutrons have orbital angular momentum β and spin s total angular momentum: π = β + π total nuclear spin: πΌ= π πΌ= π 1 + π 2 +β― π π , π 1 + π 2 +β― π π β1,β―, π 1 β π 2 ββ―β π π quantum mechanics 1H = 1 proton, so I = Β½ 2H = 1 proton and 1 neutron, so I = 1 or 0 For larger nuclei, it is not immediately evident what the spin should be as there are a multitude of possible values. mass number number of protons number of neutrons spin (I) example even 16O odd integer (1,2,β¦) 2H half-integer ( 1 2 , 3 2 ,β―) 13C 15N
4
Nuclear spin quantum number
The magnitude is given by πΏ=β πΌ πΌ+1 The projection on the z-axis (arbitrarily chosen), takes on discretized values according to m, where π=βπΌ, βπΌ+1, βπΌ+2, β―, +πΌ
5
Parity wave β particle duality: Ξ¨(x) = Ξ¨(-x) β parity = even (+)
photoelectric effect wave function Ξ¨(x) x Ξ¨(x) = Ξ¨(-x) β parity = even (+) β = 0, 2, 4, β¦ even Ξ¨(x) = -Ξ¨(-x) β parity = odd (-) β = 1, 3, 5, β¦ odd
6
Magnetic moment π =πΌβπ΄ A π£= 2ππ π‘ β π‘= 2ππ π£ β= π π π£βπ πΌ= π π‘
π£= 2ππ π‘ β π‘= 2ππ π£ β I β= π π π£βπ πΌ= π π‘ = πβπ£ 2ππ π= πβπ£ 2ππ βπ π 2 = πβπ£βπ 2 π= πβπ£βπ 2 β π π π£βπ π π π£βπ = πββ 2 π π π π΅πβπ = πββ 2 π π π β = π π΅ β β β electron orbital magnetic moment π β = π π β β β π π = πββ 2 π π proton orbital magnetic moment
7
Magnetic moment π β = π π΅ β β β π π = β2.0023βπ π΅ β π β
electron orbital magnetic moment π π = β2.0023βπ π΅ β π β electron spin magnetic moment (Dirac equation) π π = βπ π β π β proton spin magnetic moment π π = β βπ π β π β neutron spin magnetic moment Why has a neutron a magnetic moment when it is uncharged? u-quark: π d-quark: β 1 3 π neutrons and protons are not elementary particles internal structure: they have charges. proton +1e neutron 0e π π π» = 5.59β3.83 βπ π β 1 2 = π π =0.8574β π π (experiment)
8
Magnetic resonance imaging (MRI)
π π = βπ π β π β proton spin magnetic moment π πΌ =πΎβπΌ gyromagnetic ratio πΎ=πβ π π β =πβ47.89β π β1 π β1 proton π-factor: , spin I: Β½ Δ§ proton in magnetic field energy difference between states βπΈ=ββπ ΞπΈ=2β π πΌ β π΅ 0 π= πΎ 2π β π΅ Larmor frequency πΎ 2π = ππ»π§ π for proton Larmor frequency low energy high energy low energy high energy
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.