Presentation is loading. Please wait.

Presentation is loading. Please wait.

Multiplying Polynomials

Similar presentations


Presentation on theme: "Multiplying Polynomials"— Presentation transcript:

1 Multiplying Polynomials
6-5 Multiplying Polynomials Warm Up Lesson Presentation Lesson Quiz Holt McDougal Algebra 1 Holt Algebra 1

2 Warm Up Simplify and evaluate. 1. 7m2 + 3m + 4m2
2. (r2 + s2) – (5r2 + 4s2) 3. (10pq + 3p) + (2pq – 5p + 6pq)

3 Essenstial Question How do you multiply polynomials?

4 To multiply monomials and polynomials, you will use some of the properties of exponents that you learned earlier in this chapter.

5 When multiplying powers with the same base, keep the base and add the exponents.
x2  x3 = x2+3 = x5 Remember!

6 Example: Multiplying Monomials
A. (6y3)(3y5) (6y3)(3y5) Group factors with like bases together. (6 3)(y3 y5) 18y8 Multiply. B. (3mn2) (9m2n) (3mn2)(9m2n) Group factors with like bases together. (3 9)(m m2)(n2  n) 27m3n3 Multiply.

7 Example: Multiplying Monomials
1 4 s2 t2 (st) (-12 s t2) ( ) æ ç è - 2 1 12 4 t s ö ÷ ø Group factors with like bases together. ( ) æ ö ç è 2 1 −12 4 t s ÷ ø Multiply.

8 Group factors with like bases together. (3x3)(6x2)
I do…. Multiply. a. (3x3)(6x2) Group factors with like bases together. (3x3)(6x2) (3 6)(x3 x2) Multiply. 18x5

9 Group factors with like bases together. (2r2t)(5t3)
We do…. Multiply. b. (2r2t)(5t3) Group factors with like bases together. (2r2t)(5t3) (2 5)(r2)(t3 t) Multiply. 10r2t4

10 ( ) ( ) ( ) ( ) You do…. Multiply. æ 1 ö c. x y 12 x z ç ÷ y z è 3 ø æ
4 5 ç ÷ y z è 3 ø ( ) æ ç è 4 5 2 1 12 3 x z y ö ÷ ø Group factors with like bases together. ( ) æ ç è 3 2 4 5 1 12 z x x y y ö ÷ ø Multiply. 7 5 4 x y z

11 Distributive Property Of Multiplication

12 Example: Multiplying a Polynomial by a Monomial
4(3x2 + 4x – 8) Distribute 4. 4(3x2 + 4x – 8) (4)3x2 +(4)4x – (4)8 Multiply. 12x2 + 16x – 32

13 Example Multiply. 6pq(2p – q) Distribute 6pq. (6pq)(2p – q) (6pq)2p + (6pq)(–q) Group like bases together. (6  2)(p  p)(q) + (–1)(6)(p)(q  q) 12p2q – 6pq2 Multiply.

14 ( ) ( ) ( ) ( ) Example Multiply. 1 x y 6 xy + 8 x y 2 Distribute .
æ ç è + 2 1 6 8 xy ö ÷ ø Group like bases together. x2 • x ( ) æ + ç è 1 • 6 2 y • y x2 • x2 y • y2 • 8 ö ÷ ø 3x3y2 + 4x4y3 Multiply.

15 1. Multiply the First terms. (x + 3)(x + 2) x x = x2
FOIL method. F 1. Multiply the First terms. (x + 3)(x + 2) x x = x2 O 2. Multiply the Outer terms. (x + 3)(x + 2) x 2 = 2x I 3. Multiply the Inner terms. (x + 3)(x + 2) x = 3x L 4. Multiply the Last terms. (x + 3)(x + 2) = 6 (x + 3)(x + 2) = x2 + 2x + 3x + 6 = x2 + 5x + 6 F O I L

16 Example: Multiplying Binomials
(s + 4)(s – 2) (s + 4)(s – 2) s(s – 2) + 4(s – 2) Distribute. s(s) + s(–2) + 4(s) + 4(–2) Distribute again. s2 – 2s + 4s – 8 Multiply. s2 + 2s – 8 Combine like terms.

17 In the expression (x + 5)2, the base is (x + 5)
In the expression (x + 5)2, the base is (x + 5). (x + 5)2 = (x + 5)(x + 5) Helpful Hint

18 Example: Multiplying Binomials
Write as a product of two binomials. (x – 4)2 (x – 4)(x – 4) Use the FOIL method. (x x) + (x (–4)) + (–4  x) + (–4  (–4)) x2 – 4x – 4x + 16 Multiply. x2 – 8x + 16 Combine like terms.

19 Write as a product of two binomials. (x – 3)2
Example Multiply. Write as a product of two binomials. (x – 3)2 (x – 3)(x – 3) Use the FOIL method. (x x) + (x(–3)) + (–3  x)+ (–3)(–3) x2 – 3x – 3x + 9 Multiply. x2 – 6x + 9 Combine like terms.

20 Example: Multiplying Polynomials
(x – 5)(x2 + 4x – 6) (x – 5 )(x2 + 4x – 6) Distribute x. x(x2 + 4x – 6) – 5(x2 + 4x – 6) Distribute x again. x(x2) + x(4x) + x(–6) – 5(x2) – 5(4x) – 5(–6) x3 + 4x2 – 5x2 – 6x – 20x + 30 Simplify. x3 – x2 – 26x + 30 Combine like terms.

21 Write the formula for the area of a rectangle.
Example 5: Application The width of a rectangular prism is 3 feet less than the height, and the length of the prism is 4 feet more than the height. a. Write a polynomial that represents the area of the base of the prism. A = l  w A = l w Write the formula for the area of a rectangle. Substitute h – 3 for w and h + 4 for l. A = (h + 4)(h – 3) A = h2 + 4h – 3h – 12 Multiply. A = h2 + h – 12 Combine like terms. The area is represented by h2 + h – 12.

22 Example 5: Application Continued
The width of a rectangular prism is 3 feet less than the height, and the length of the prism is 4 feet more than the height. b. Find the area of the base when the height is 5 ft. A = h2 + h – 12 Write the formula for the area the base of the prism. A = h2 + h – 12 A = – 12 Substitute 5 for h. A = – 12 Simplify. A = 18 Combine terms. The area is 18 square feet.

23 Lesson Quiz: Part I Multiply. 1. (6s2t2)(3st) 2. 4xy2(x + y) 3. (x + 2)(x – 8) 4. (2x – 7)(x2 + 3x – 4) 5. 6mn(m2 + 10mn – 2) 6. (2x – 5y)(3x + y)

24 Lesson Quiz: Part II 7. A triangle has a base that is 4cm longer than its height. a. Write a polynomial that represents the area of the triangle. b. Find the area when the height is 8 cm.


Download ppt "Multiplying Polynomials"

Similar presentations


Ads by Google