Download presentation
1
Electromagnetic Potentials
E = -f Scalar Potential f and Electrostatic Field E x E = -∂B/∂t Faraday’s Law x -f = 0 ≠ -∂B/∂t Substitute E = -f in Faraday’s law x E = x (-f - ∂A/∂t) = 0 - ∂( x A)/∂t = -∂B/∂t E = -f - ∂A/∂t Generalize to include Vector Potential A B = x A Identify B in terms of Vector Potential E = -f - ∂A/∂t B = x A
2
Electromagnetic Potentials
(A,f) 4-vector generates E, B 3-vectors ((A,f) redundant by one degree) Suppose (A,f) and (A’,f’) generate the same E, B fields E = -f - ∂A/∂t = -f’ - ∂A’/∂t B = x A = x A’ Let A’ = A + f x A’ = x (A + f) = x A + x f = x A What change must be made to f to generate the same E field? E = -f’ - ∂A’/∂t = -f’ - ∂ (A + f )/∂t = -f - ∂A/∂t A’ = A + f f’ = f - ∂f/∂t Gauge Transformation
3
Electromagnetic Potentials
A = AL + AT L and T components of A A’ = AL + AT + f Change of gauge . A’ = . AL + . AT + . f = . AL + 2 f . AT = 0 Choose . A’ = 0 f = -AL A’ = AT f’ = f - ∂f/∂t f’ = f - ∂f/∂t f’ = f + ∂AL/∂t E = -f - ∂A/∂t = (-f) - ∂(AL+ AT)/∂t x E = x (-f - ∂A/∂t) = x -∂AT/∂t x f = x ∂AL/∂t = 0 E = -f’ - ∂A’/∂t = (-f - ∂AL/∂t) - (∂AT/∂t) x E = x -∂AT/∂t
4
Electromagnetic Potentials
Coulomb Gauge Choose . A = 0 Represent Maxwell laws in terms of A,f potentials and j, r sources x B = mo j + moeo ∂E/∂t Maxwell-Ampère Law x ( x A) = mo j + moeo ∂ (-f - ∂A/∂t)/∂t (. A) - 2 A = mo j – 1/c2 ∂f/∂t - 1/c2 ∂ 2A/∂t2 2 − 1 c2 ∂2 ∂t2 A = – mo j + 1 c2 ∂f ∂t . E = r /eo Gauss’ Law . (-f - ∂A/∂t) = -. f - ∂. A/∂t = - 2f = r /eo
5
Electromagnetic Potentials
2 − 1 c2 ∂2 ∂t2 A = − mo j + 1 c2 ∂f ∂t -2f = r /eo Coulomb or Transverse Gauge Coupled equations for A, f
6
Electromagnetic Potentials
Lorentz Gauge Choose . A = – 1/c2 ∂f/∂t x B = mo j + moeo ∂E/∂t Maxwell-Ampère Law (. A) - 2 A = mo j – 1/c2 ∂f/∂t - 1/c2 ∂ 2A/∂t2 2 − 1 c2 ∂2 ∂t2 A = – mo j . E = r /eo Gauss’ Law . (-f - ∂A/∂t) = -. f - ∂. A/∂t = -. f + 1/c2 ∂2f/∂t2 = r /eo 2 − 1 c2 ∂2 ∂t2 f = – r eo
7
Electromagnetic Potentials
. A = – 1/c2 ∂f/∂t 2 − 1 c2 ∂2 ∂t2 A = – mo j Lorentz Gauge 2 − 1 c2 ∂2 ∂t2 f = – r eo □2 A f = mo j r eo □2 = 1 c2 ∂2 ∂t2 − 2
8
Electromagnetic Potentials
□2 A f = mo j r eo Each component of A, f obeys wave equation with a source □2 = 1 c2 ∂2 ∂t2 − 2 □2G(r - r’, t - t’) = d(r - r’) d(t - t’) Defining relation for Green’s function d(r - r’) d(t - t’) Represents a point source in space and time G(r - r’, t - t’) = q(t − t’) d(t − t’ − r − r’ /c) 4p r − r’ Proved by substitution d(t − t’ − r − r’ /c) is non-zero for t − t’ = r − r’ /c i.e. time taken for signal to travel from r’ to r at speed c (retardation of the signal) Unit step function q(t − t’) ensures causality (no response if t’ > t)
9
Electromagnetic Potentials
f(r, t) = dr’dt’ G(r − r’, t − t’) r r’, t’ e o Solution in terms of G and source = dr’dt’ q(t − t’) d(t − t’ − r − r’ /c) 4p r−r’ r r’, t’ e o Let t = r − r’ /c be the retardation time, then there is a contribution to f(r, t) from r r’, t’ at t’ = t - t. Hence we can write, more simply, f(r, t) = 1 4p e o dr’ r r’,t − t r−r’ c.f. GP Eqn 13.11 Similarly A(r, t) = m o 4p dr’ j r’,t − t r−r’ c.f. GP Eqn 13.12 These are retarded vector and scalar potentials
10
Radiation by Hertz Electric Dipole
+q -q l x y z r = (x, y, z) Field Point r' = (0, 0, z’) Source Point Charge q(t) = qo Re {eiwt} Current I(t) = dq/dt = qo Re {iw eiwt} Dipole Moment p(t) = po Re {eiwt} = qo l Re {eiwt} Wire Radius a Current Density j(t) = I(t) / p a2 Using retarded potentials, calculate E(r,t), B(r,t) for dipole at origin
11
Radiation by Hertz Electric Dipole
Retarded Electric Vector Potential A(r, t) = mo 4p j (r’, t − t) r – r’ dr’ A || ez because j || ez Retardation time t = |r - ezz’| / c if l << c t then t ≈ |r| / c = r / c Az(r, t) ≈ mo l 4p I (t − r / c ) r for distances r >> l . A = – 1/c2 ∂f/∂t Obtain f from Lorentz Gauge condition . A = ∂Az(r, t) / ∂z = mo l 4p ∂ ∂z I (t − r / c ) r = mo l 4p − ∂I (t − r / c) ∂(t − r / c) z cr2 −I (t − r / c) z r3 = – moeo ∂f/∂t ∂f/∂t = l 4peo ∂I (t − r / c) ∂(t − r / c) z cr2 +I (t − r / c) z r3
12
Radiation by Hertz Electric Dipole
Differentiate wrt z and integrate wrt t to obtain f(r, z, t) = l 4peo q(t − r / c) z r3 +I(t − r / c) z cr2 Az(r, t) = mo l 4p I (t − r / c ) r I (t − r / c) dt = dq dt (t − r / c) dt =q(t − r/c) ∂I (t − r / c) ∂(t − r / c) dt = I (t − r / c) since d(t - r/c) = dt Charge q(t) = qo Re {eiwt} Current I(t) = dq dt = qo Re {iw eiwt} Electric Field E(r, t) = - f - ∂A ∂t
13
Radiation by Hertz Electric Dipole
Switch to spherical polar coordinates f(r, q, t) = l 4peo q(t − r / c) cos q r2 +I(t − r / c) cos q cr = ∂ ∂r , 1 r ∂ ∂q , 1 r sinq ∂ ∂𝜑 -f(r, q, t) = po 4peo eiw(t – r / c) r cos q 2 r2 + 2ik r −k2 ,sin q 1 r2 + ik r , 0 k = w / c po = qol is the dipole amplitude
14
Radiation by Hertz Electric Dipole
Obtain part of E field due to A vector Az(r, t) = mo l 4p I (t − r / c ) r Cartesian representation A(r, q, t) = mo l 4p qo 𝑖w eiw(t – r / c) r cos q, − sin q , 0 Spherical polar rep’n - ∂A(r, q, t) ∂t = − mo l 4p qo 𝑖w 2 eiw(t – r / c) r cos q, − sin q , 0 - ∂A(r, q, t) ∂t = − l 4peo qo 𝑖w 2 eiw(t – r / c) c2 r cos q, − sin q , 0 - ∂A(r, q, t) ∂t = po 4peo eiw(t – r / c) r k2 cos q, −k2 sin q, 0
15
Radiation by Hertz Electric Dipole
Total E field E(r, q, t) = po 4peo eiw(t – r / c) r cos q 2 r2 + 2ik r ,sin q 1 r2 + ik r −k2 , 0 Long range (radiated) electric field, proportional to 1 r Erad(r, q, t) = po 4peo eiw(t – r / c) r 0 ,− k2 sin q, 0 Radiated E field lines sin q, sin2q polar plots
16
Radiation by Hertz Electric Dipole
Short range, electrostatic field w = 0 i.e. k = w / c → 0 Total E field E(r, q, t) = po 4peo eiw(t – r / c) r cos q 2 r2 + 2ik r ,sin q 1 r2 + ik r −k2 , 0 Eelectrostat. = -f(r, q) = po 4peor3 2 cos q, sin q , 0 Classic field of electric point dipole
17
Radiation by Hertz Electric Dipole
Obtain B field from x A x A= 1 r sinq ∂ ∂q A𝜑 sinq − ∂Aq ∂𝜑 , 1 r 1 sinq ∂Ar ∂𝜑 − ∂ ∂r rA𝜑 , 1 r ∂ ∂r rAq − ∂Ar ∂q A(r, q, t) = mo l 4p qo 𝑖w eiw(t – r / c) r cos q, − sin q , 0 = po 4peo 𝑖w eiw(t – r / c) c2r cos q, − sin q , 0 x A= po 4peo eiw(t – r / c) cr 0, 0, sin q ik r −k2 Radiated part of B field Brad(r,q, t)=− po 4peo eiw(t – r / c) cr 0, 0,k2sin q Brad = Erad / c
18
Radiation by Hertz Electric Dipole
Power emitted by Hertz Dipole The Poynting vector, N, gives the flux of radiated energy Jm-2s-1 The flux N = E x H depends on r and q, but the angle-integrated flux is constant N = E x H = Eq B𝜑 r / mo Eq = − po 4peo eiw(t – r / c) r k2sin q B𝜑= Eq c =− po 4peo eiw(t – r / c) cr k2sin q W = N . dS = 1 mo 0 2p d𝜑 0 p dq r2 sin q Eq B𝜑
19
Radiation by Hertz Electric Dipole
W = N . dS = 1 mo 0 2p d𝜑 0 p dq r2 sin q Eq B𝜑 = 1 moc 0 2p d𝜑 0 p dq r2 sin q po 4peo 1 r k2sin q 2 = 2p moc po 4peo 2k4 4 3 cos2 w(t – r / c) p dq sin3q = <cos2 w(t – r / c)> = 1 2 W = cpo2k4 12peo = po2w4 12peoc3 = w2 Io2 l 2 12 p eo c Average power over one cycle
20
Radiation by Half-wave Antenna
x y z r = (x, y, z) Field Point r' = (0, 0, z’) Source Point q’ q Half Wave Antenna r’ r r‘ sinq = r sin(p – q’) = r sinq’ r‘2 = z’2 + r2 – 2 r z’ cosq r‘ = r2 – 2 r z’ cosq + z’2 r‘ = r 1 – 2 z’ r cosq + z’2 r2 r‘ ⋍ r – z’ cosq t – r’ c ⋍ t – r c + z’ cosq c Current distribution I(z’, t) = Io cos (2p z’/ l) eiwt Current distribution on wire is half wavelength and harmonic in time
21
Radiation by Half-wave Antenna
Single Hertz Dipole Eqrad = − po 4peo eiw(t – r / c) r k2sin q k2 po = w2/c2 qo l = w Io l / c2 Io = w qo Eqrad = − Iow l sin q 4peoc2 eiw(t – r / c) r Current distribution in antenna I(z’, t) = Io cos 2p z’ l eiwt Radiation from antenna is equivalent to sum of radiation from Hertz dipoles dEq = − Io w dz’ sin q ’ 4peoc2 cos 2p z’ l eiw(t – r′ / c) r′ t – r’ c ⋍ t – r c + z’ cosq c ⋍− Io w 4peoc2 sin q r dz’ cos 2p z’ l eiw(t – r / c + z’ cosq / c) sin q ’ r’ = r r’ 2 sin q r ⋍ sin q r
22
Radiation by Half-wave Antenna
dEq ⋍− Io w 4peoc2 sin q r dz’ cos 2p z’ l eiw(t – r / c + z’ cosq / c) Eq ⋍− Io w 4peoc2 sin q r eiw(t – r / c) −l/4 +l/4 dz’ cos 2p z’ l eiw z’ cosq / c cos 2p z’ l = 1 2 ei2pz’/l + e−i2pz’/l −l/4 +l/4 dz’ cos 2p z’ l eiw z’ cosq / c = 2 k cos p cosq /2 sin2 q k = 2p l
23
Radiation by Half-wave Antenna
Half Wave Antenna electric field Eqrad⋍− Io w 4peoc2 eiw(t – r / c) r sin q 2 k cos p cosq /2 sin2q Eqrad⋍− Io 2peoc eiw(t – r / c) r cos p cosq /2 sinq c.f. GP NB phase difference Hertz Dipole electric field Eqrad = − Iow l sin q 4peoc2 eiw(t – r / c) r = − Io 2peoc l w 2c eiw(t – r / c) r sin q l w 2c = π l λ ≪1 In general, for radiation in vacuum B = k x E / c, hence for antenna B𝜑rad⋍− Io 2peoc eiw(t – r / c) c r cos p cosq /2 sin q
24
Radiation by Half-wave Antenna
Eq ⋍− Io 2peoc eiw(t – r / c) r cos p cosq /2 sin q B𝜑⋍− Io 2peoc eiw(t – r / c) c r cos p cosq /2 sin q W = N . dS = 1 mo 0 2p d𝜑 0 p dq sin q Eq B𝜑 = 1 mo Io2 4p2eo2 c p d𝜑 0 p dq sinq cos2 p cosq /2 sin2q cos2(t − r/c) W = Io2 4peo c 0 p dq cos2 p cosq /2 sinq W ⋍73 Io Average power over one cycle
25
Radiation by Half-wave Antenna
W = Io2 4peo c 0 p dq cos2 p cosq /2 sinq p dq cos2 p cosq /2 sinq = W ⋍73 Io W =5 kW if Io⋍12 A radiation resistance = 73 W Polar plot for half wave antenna Hertz Dipole W = ω2Io2 l 2 12 p eo c3 = Io2 4 p eo c w2 c2 l 2 3 = Io2 4 p eo c k2l 2 3 Polar plot for Hertz dipole
26
Radiation by Half-wave Antenna
Full Wave Antenna Eq ⋍−𝑖 Io 2peoc eiw(t – r / c) r sin p cosq sin q 0 p dq sin2 p cosq sinq = W ⋍73 Io W =5 kW if Io⋍12 A radiation resistance = 73 W Hertz Dipole W = Io2 l 2 12 p eo c3 = Io2 4 p eo c w2 c2 l 2 3 = Io2 4 p eo c k2l 2 3
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.