Download presentation
Presentation is loading. Please wait.
Published byBruno Porter Modified over 7 years ago
1
Barnett/Ziegler/Byleen Precalculus: Functions & Graphs, 4th Edition
Chapter Five Trigonometric Functions Copyright © 1999 by the McGraw-Hill Companies, Inc.
2
Wrapping Function 5-1-48
3
Circular Functions If x is a real number and (a, b) are the
coordinates of the circular point W(x), then: 5-2-49
4
Angles (a) positive (b) negative (c) and coterminal
(a) is a quadrantal (b) is a third-quadrant (c) is a second-quadrant angle angle angle
5
Angles (a) Straight angle (b) Right angle (c) Acute angle
(d) Obtuse angle
6
Radian Measure 5-3-51
7
Trigonometric Functions with
Angle Domains If q is an angle with radian measure x, then the value of each trigonometric function at q is given by its value at the real number x. Trigonometric Circular Function Function sin q = sin x cos q = cos x tan q = tan x csc q = csc x sec q = sec x cot q = cot x 5-4-52
8
Trigonometric Functions with Angle Domains Alternate Form
If q is an arbitrary angle in standard position in a rectangular coordinate system and P(a, b) is a point r units from the origin on the terminal side of q, then: 5-4-53
9
Reference Triangle and Reference Angle
1. To form a reference triangle for , draw a perpendicular from a point P(a, b) on the terminal side of to the horizontal axis. 2. The reference angle is the acute angle (always taken positive) between the terminal side of and the horizontal axis. 5-4-54
10
30—60 and 45 Special Triangles
( /6) 45 2 ( /4) 2 1 3 45 ( /4) 1 60 ( /3) 1 5-4-55
11
Trigonometric Functions with Angle Domains Alternate Form
If q is an arbitrary angle in standard position in a rectangular coordinate system and P(a, b) is a point r units from the origin on the terminal side of q, then: 5-5-53
12
Graph of y = sin x Period: 2 Domain: All real numbers Range: [–1, 1]
/2 Graph of y = sin x a b b P (cos x , sin x ) (0, 1) 1 x b Period: 2 Domain: All real numbers Range: [–1, 1] Symmetric with respect to the origin a 2 (–1, 0) a (1, 0) y = sin x = b (0, –1) 3 /2 y 1 x –2 – 2 3 4 -1 5-6-56
13
Graph of y = cos x Period: 2 Domain: All real numbers Range: [–1, 1]
/2 a b b Graph of y = cos x P (cos x , sin x ) (0, 1) 1 x b Period: 2 Domain: All real numbers Range: [–1, 1] Symmetric with respect to the y axis a 2 (–1, 0) a (1, 0) y = cos x = a (0, –1) 3 /2 y 1 x –2 – 2 3 4 -1 5-6-57
14
Graph of y = tan x Period: Domain: All real numbers
except /2 + k , k an integer Range: All real numbers Symmetric with respect to the origin Increasing function between asymptotes Discontinuous at x = /2 + k , k an integer 1 –2 – 2 x 5 3 3 5 – – – 2 2 2 2 2 2 –1 5-6-58
15
Graph of y = cot x Period: Domain: All real numbers except k ,
k an integer Range: All real numbers Symmetric with respect to the origin Decreasing function between asymptotes Discontinuous at x = k , k an integer 1 3 3 – – 2 2 2 2 x –2 – 2 –1 5-6-59
16
Graph of y = csc x y y = csc x sin 1 = y = sin x 1 x –2 – 2 –1
2 –1 Period: 2 Domain: All real numbers except k , k an integer Range: All real numbers y such that y –1 or y 1 Symmetric with respect to the origin Discontinuous at x = k , k an integer 5-6-60
17
Graph of y = sec x y y = sec x cos 1 = y = cos x 1 x –2 – 2 –1
2 –1 Period: 2 Domain: All real numbers except /2 + k, k an integer Symmetric with respect to the y axis Discontinuous at x = /2 + k, k an integer Range: All real numbers y such that y –1 or y 1 5-6-61
18
Step 1. Find the amplitude | A |. Step 2. Solve Bx + C = 0 and
= 2 : Bx + C = 0 and Bx + C = 2 C C 2 x = – x = – + B B B Phase shift Period C 2 Phase shift = – Period = B B The graph completes one full cycle as Bx + C varies from 0 to 2 — that is, as x varies over the interval é C C 2 ù ê – , – + ú B B B ë û é C C 2 ù Step 3. Graph one cycle over the interval ê – , – + ú . B B B ë û Step 4. Extend the graph in step 3 to the left or right as desired. 5-7-62
19
Graph of y = tan x Period: Domain: All real numbers
except /2 + k , k an integer Range: All real numbers Symmetric with respect to the origin Increasing function between asymptotes Discontinuous at x = /2 + k , k an integer 1 –2 – 2 x 5 3 3 5 – – – 2 2 2 2 2 2 –1 5-8-58
20
Graph of y = cot x Period: Domain: All real numbers except k ,
k an integer Range: All real numbers Symmetric with respect to the origin Decreasing function between asymptotes Discontinuous at x = k , k an integer 1 3 3 – – 2 2 2 2 x –2 – 2 –1 5-8-59
21
Graph of y = csc x y y = csc x sin 1 = y = sin x 1 x –2 – 2 –1
2 –1 Period: 2 Domain: All real numbers except k , k an integer Range: All real numbers y such that y –1 or y 1 Symmetric with respect to the origin Discontinuous at x = k , k an integer 5-8-60
22
Graph of y = sec x y y = sec x cos 1 = y = cos x 1 x –2 – 2 –1
2 –1 Period: 2 Domain: All real numbers except /2 + k, k an integer Symmetric with respect to the y axis Discontinuous at x = /2 + k, k an integer Range: All real numbers y such that y –1 or y 1 5-8-61
23
Facts about Inverse Functions
For f a one-to-one function and f–1 its inverse: 1. If (a, b) is an element of f, then (b, a) is an element of f–1, and conversely. 2. Range of f = Domain of f– Domain of f = Range of f–1 3. 4. If x = f–1(y), then y = f(x) for y in the domain of f–1 and x in the domain of f, and conversely. 5. f[f–1(y)] = y for y in the domain of f– f–1[f(x)] = x for x in the domain of f 5-9-63
24
Inverse Sine Function Sine function y y = sin x y = arcsin x æ
– 2 1 x 2 –1 Sine function y –1 y = sin x y = arcsin x æ ö y = sin x 1 , è 2 ø æ 2 ö – 2 1 , 1 è 2 ø (0,0) (0,0) x x –1 1 2 æ ö – , –1 –1 æ ö è 2 ø –1 , – – è 2 ø 2 é ù D OMAIN = ê – , ú D OMAIN = [–1, 1] ë 2 2 û é ù R ANGE = [–1, 1] R ANGE = ê – , ú ë 2 2 û Restricted sine function Inverse sine function 5-9-64
25
Inverse Cosine Function
y 1 x –1 Cosine function y y = cos x = arccos –1 y y = cos x (–1, ) (0,1) 1 è æ ø ö 2 ,0 è æ ø ö , 2 2 x 2 –1 (1,0) ( , –1) x –1 1 D OMAIN = [0, ] D OMAIN = [–1, 1] R ANGE = [–1, 1] R ANGE = [0, ] Restricted cosine function Inverse cosine function 5-9-65
26
Inverse Tangent Function
y y = tan x Tangent function 1 2 3 2 x 3 2 – – 2 –1 y y y = tan –1 x æ ö y = tan x = arctan x 1 , è 4 ø 2 – 2 æ ö 1 , 1 è 4 ø –1 x x 2 æ 1 ö – , –1 –1 è 4 ø 2 æ ö –1 , – – è 4 ø æ ö D OMAIN = (– , ) D OMAIN = ç – , ÷ è 2 2 ø æ ö R ANGE = ç – , ÷ R ANGE = (– , ) è 2 2 ø Restricted tangent function Inverse tangent function 5-9-66
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.