Presentation is loading. Please wait.

Presentation is loading. Please wait.

Lecture 3 Static properties (VTC and noise margins)

Similar presentations


Presentation on theme: "Lecture 3 Static properties (VTC and noise margins)"— Presentation transcript:

1 Lecture 3 Static properties (VTC and noise margins)
The CMOS Inverter Lecture 3 Static properties (VTC and noise margins)

2 Where are we? OUT IN Inverter OUT IN Logic gates P N
N-type Pull-down network P-type pull-up network OUT IN Logic gates P N Designing w switches Hands-on lab session MCC092 IC Design - Lecture 3: The Inverter

3 Where are we? 1 Inverter OUT IN Logic gates Designing w switches
1 Inverter N-type Pull-down network P-type pull-up network OUT IN Logic gates Designing w switches Hands-on lab session MCC092 IC Design - Lecture 3: The Inverter

4 Where are we? 1 Inverter OUT IN Logic gates Designing w switches
Inverter N-type Pull-down network P-type pull-up network OUT IN Logic gates Designing w switches Hands-on lab session MCC092 IC Design - Lecture 3: The Inverter

5 Where are we? VSW Inverter OUT IN Logic gates IDS Designing w switches
N-type Pull-down network P-type pull-up network OUT IN Logic gates IDS Designing w switches Hands-on lab session MCC092 IC Design - Lecture 3: The Inverter

6 MOSFET I/V Characteristics
IDS ON Saturation: IDSN=IDSAT,N IDSN=GONVDS VDS OFF: IDS=0 OFF: IDS=0 IDSP=GONVDS Saturation: IDSP=IDSAT,P ON MCC092 IC Design - Lecture 3: The Inverter

7 MOSFET I/V Characteristics
IDS ON Saturation: IDSN=IDSAT,N Saturation: ISDP=IDSAT,P ON ISDP=GONVSD IDSN=GONVDS VDS OFF: IDS=0 OFF: IDS=0 MCC092 IC Design - Lecture 3: The Inverter

8 MOSFET I/V Characteristics
IDS ON Saturation: IDSN=IDSAT,N Saturation: IDSP=IDSAT,P IDSN=GONVDS VDS OFF: IDS=0 MCC092 IC Design - Lecture 3: The Inverter

9 VIN/VOUT voltage plane
VDD, VDD VDD NMOS OFF NMOS VIN VDD PMOS OFF PMOS MCC092 IC Design - Lecture 3: The Inverter

10 VIN/VOUT voltage plane
VDD, VDD VDD NMOS OFF PMOS OFF VIN VDD MCC092 IC Design - Lecture 3: The Inverter

11 Voltage Transfer Characteristic - VTC
VOUT Inverter VDD, VDD VDD NMOS OFF PMOS OFF IDS,P=0 1 IDS,N=0 VDS IDS VIN VDD The ON p-switch pulls the output high MCC092 IC Design - Lecture 3: The Inverter

12 Voltage Transfer Characteristic - VTC
VOUT 1 Inverter VDD, VDD VDD NMOS OFF PMOS OFF IDS,P=0 IDS,N=0 IDS VIN VDD The ON n-switch pulls the output low VDS MCC092 IC Design - Lecture 3: The Inverter

13 Voltage Transfer Characteristic - VTC
VOUT Inverter VDD, VDD VSW VDD NMOS OFF PMOS OFF VSW IDS VSW VDS IDS Saturation: IDSP,N=IDSAT,P VIN VDD Switching occurs in the green region where both MOSFETs are saturated! And saturation currents are equal: Solving for VIN using x=kN/kP yields MCC092 IC Design - Lecture 3: The Inverter

14 Voltage Transfer Characteristic - VTC
DV VOUT Inverter VDD, VDD VSW VDD NMOS OFF PMOS OFF VSW IDS VSW VDS IDS Saturation: IDSP,N=IDSAT,P VIN VDD The switching voltage equation can be rewritten on a form easier to grasp if we introduce MCC092 IC Design - Lecture 3: The Inverter

15 Voltage Transfer Characteristic - VTC
VOUT Inverter VDD, VDD VSW VDD NMOS OFF PMOS OFF VSW IDS VSW VDS IDS VIN VDD Equal currents in top blue region yields VOUT vs. VIN! MCC092 IC Design - Lecture 3: The Inverter

16 Voltage Transfer Characteristic - VTC
VOUT Inverter VDD, VDD VSW VDD NMOS OFF PMOS OFF VSW IDS VSW VDS IDS VIN VDD Equal currents in bottom blue region yields VOUT vs. VIN! MCC092 IC Design - Lecture 3: The Inverter

17 The voltage characteristic (VTC)
VOUT For x=kN/kP=1 we have What if we make n-channel MOSFET wider, i.e. for x>1? VDD What happens to VTC? Will switching voltage VSW increase or decrease? Assume x=4 and we have Assume x=1/4 and we have VIN VTN VSW VDD+VTP VDD MCC092 IC Design - Lecture 3: The Inverter

18 The voltage characteristic (VTC)
VOUT Which VTC is NAND and which VTC is NOR? VDD NAND NOR VIN VTN VSW VDD+VTP VDD MCC092 IC Design - Lecture 3: The Inverter

19 The voltage characteristic (VTC)
VOUT How about current flow? No current flow in red regions! ”short-circuit” current ISC flows in blue/green regions n-channel MOSFET saturated for VIN<VSW VDD p-channel MOSFET saturated for VIN>VSW VIN VTN VSW VDD+VTP VDD MCC092 IC Design - Lecture 3: The Inverter

20 MCC092 IC Design - Lecture 3: The Inverter
Noise Margins- NML VOUT VOUT VIL,max VIH,min VDD Valid ”0” VIN Valid ”1” VDD Valid ”0” Valid ”1” VOH,min VOL,max NMH VIN not valid VIN VIH,min VIL,max MCC092 IC Design - Lecture 3: The Inverter

21 MCC092 IC Design - Lecture 3: The Inverter
Noise Margins- NML VOUT VDD VIN VDD Valid ”1” VOH,min VIH,min VIN not valid Valid ”1” NML VIL,max VOL,max Valid ”0” VIN VIL,max VIH,min VOUT MCC092 IC Design - Lecture 3: The Inverter

22 Memory cell characterization
Butterfly Diagram VOUT VDD Valid ”1” VOH,min NMH Memory cell characterization VIN VOUT NML VOL,max Valid ”0” VIN VIL,max VIH,min MCC092 IC Design - Lecture 3: The Inverter

23 Noise Margins – skewed inverters
NMH NML NML NMH MCC092 IC Design - Lecture 3: The Inverter

24 Noise Margins – an example
NMH=VOH,min-VIH,min NML=VIL,max- VOL,max Let´s define valid regions from points where slope AV = -1! VOUT These points yields numbers for (VOH,min, VIL,max) and (VOL,max, VIH,min) so that NMH and NML can be calculated! VDD Valid ”0” Valid ”1” VIL,max VIH,min VOH,min VOL,max VIN VDD MCC092 IC Design - Lecture 3: The Inverter

25 Noise Margins – an example
NMH=VOH,min-VIH,min NML=VIL,max- VOL,max NMH=VOH,min-VIH,min =0.44 V NML=VIL,max- VOL,max = =0.44 V Let´s define valid regions from points where slope AV = -1! VOUT 0.28 V DV=0.64 V These points yields numbers for (VOH,min, VIL,max) and (VOL,max, VIH,min) so that NMH and NML can be calculated! VDD Valid ”0” Valid ”1” DV/8 VOH,min For x=1, VTN=0.28 V and VTP=-0.28 V we have VSW= /2=0.60 V and DV=0.64 V DV/8 Formulas can be derived (for x=1): VOH,min=VDD-DV/8=1.12 V VOL,max = DV/8=80 mV VIL,max=VSW-DV/8=0.52 V VIH,min=VSW+DV/8=0.68 V Formulas can be derived (for x=1): VOH,min=VDD-DV/8 VOL,max = DV/8 VIL,max=VSW-DV/8 VIH,min=VSW+DV/8 VOL,max VIN VIL,max VIH,min VDD MCC092 IC Design - Lecture 3: The Inverter

26 MCC092 IC Design - Lecture 3: The Inverter
Summary CMOS inverter – schematic Voltage transfer characteristics (VTC) How to calculate switching voltage VSW Understand VSW dependence on kN/kP Understand switching current (ISC) flow Noise margins NMH and NML Butterfly diagram Match current curves MCC092 IC Design - Lecture 3: The Inverter

27 Why not n-switches in pull-up networks?
Initial value before switch is turned ON: VOUT=0 Register cell VDD Adder cell p-switch Logic “one” VIN VOUT VOUT VDD IDS Equivalent circuit: GND VOUT VDD VOUT=VDD-VTN   MCC092 IC Design - Lecture 3: The Inverter

28 Why not p-switches in pull-down networks?
Initial value before switch is turned ON: VOUT=VDD Register cell VDD Adder cell p-switch Logic “zero” VIN VOUT GND VDD VOUT VSS VOUT VDD IDS Equivalent circuit: VOUT=-VTP   MCC092 IC Design - Lecture 3: The Inverter


Download ppt "Lecture 3 Static properties (VTC and noise margins)"

Similar presentations


Ads by Google