Presentation is loading. Please wait.

Presentation is loading. Please wait.

CH3Br, one-color exp.: CHn+, iBr+ and CiBr+ ions vs CH3Br(Ry) states: https://notendur.hi.is/~agust/rannsoknir/Crete16/PPT-160908-CH3Br(2).pptx Content: pages:

Similar presentations


Presentation on theme: "CH3Br, one-color exp.: CHn+, iBr+ and CiBr+ ions vs CH3Br(Ry) states: https://notendur.hi.is/~agust/rannsoknir/Crete16/PPT-160908-CH3Br(2).pptx Content: pages:"— Presentation transcript:

1 CH3Br, one-color exp.: CHn+, iBr+ and CiBr+ ions vs CH3Br(Ry) states: Content: pages: Images and KERs: KERs for Ry(66019) and Ry(72977)…………………………………………………………………. 2-3 Comments concerning CH3+ signal for Ry(66019)……………………………………… ….. 4 Comments concerning Br+ signal for Ry(66019)…………………………………………….. 5 KERS vs. Ions and 2hv…………………………………………………………………………………….. 6 CH3+; KERs and images ………………………………………………………………………………… CH3+ interpretation ………………….…………………………………………………………………… 18-19 CH2+; KERs and images ………………………………………………………………………………… CH+; KERs ……………………………………………………………………………………………………… 25-26 79Br + ; KERs and images ..……………………………………………………………………………… C79Br + ;KERs ………………………………………………………………………… Comparison of xx and zz KER spectra……………………………………………………………… 34-38 Energetics with respect to possible CH3+ and CH2+ formation………………………… 39-45 Ry(78370): images and KERs, CHn+, 79Br+, C79Br+……………………………………… Comparison of C79Br+ and C81Br+(CH279Br+) signals for Ry(67275; )……………………………………………………………………………………….. 50 1hv vs 2hvr spectra contributions……………………………………………………………………… 51,64 spectra vs thresholds………………………………………………………………………………………… 52-57 Comparison of using different „pix -> eV factors „(2.72x10-5 vs. 2.98x10-5…… 56-57 Vibr. Structure vs. 3hv and 1hv excitations……………………………………………………… 58-59 CH3Br+ -> CH3+ + Br/Br* (?)…………………………………………………………………………… 62-63 Vibrational analysis of the CH3**(3p2A2) Rydberg state………………………………… Angular distributions: CH3+…………………………………….…………………………………………………………………… CH2+(under construction)………………………………………….……………………………………… CH+………………………………….………………………………………….……………………………………… Br+…………………………………………………………………………………………………………………… CBr+…………………………………………………………………………………………………………………… comparison of CH3+, CH2+ (and CH+, C+) signals………………………………………………… Updated:

2 KERs(xx): Ry(2hv/cm-1): CH3+ CH2+ CH+ C+ 72977(from 7.9.16)
To top Ry(2hv/cm-1): 72977(from ) 66019 (from ) CH3+ CH2+ CH+ C+ eV Gr:9, Lay:0 date:

3 KERs(xx): Ry(2hv/cm-1): 72977(from 7.9.16) 79Br+ C79Br+
To top eV 0.111 eV Ry(2hv/cm-1): 72977(from ) 66019 (from ) 79Br+ C79Br+ Calc. energy for CH3 + Br (<= Arnar; ): 0.179eV Calc. energy for CH3 + Br*(<= Arnar; ): eV 0.170 eV eV 81Br+ C79Br+ eV Gr:10, Lay: 1 date:

4 CH3+: Five criterias have been looked at concerning possible explanations of the structure observed For CH3+, Ry(66019) (slide 2; red curve, bottom) (see AK´s notes from ): 1hv excitation of CH3Br to repulsive valence states ruled out, since signal must involve excitation followed by dissociation to form CH3/CH3 (v´´) + Br/Br* via higher enenergy CH3Br Rydberg state followed by multiphoton ionization of CH3/CH3(v´´) (i.e the Ry(66019 state)) 2hv resonance excitation of CH3Br to the Ry(66019) state ruled out, for energetic reasons: Would involve followed by dissociation to form CH3/CH3 (v´´) + Br/Br* much higher KER´s than what is observed. followed by multiphoton ionization CH3/CH3 (v´´) 3hv excitation of CH3Br ruled out, for energetic reasons: Would involve followed by dissociation to form CH3+/CH3+ (v+) + Br- higher KER´s than what is observed. followed by multiphoton ionization CH3/CH3 (v´´) 3hv excitation of CH3Br followed by dissociation to form CH3**/CH3 (v´)** + Br Possible energetically but no detaild (CH3**/CH3 (v´)** are neutral excited states) conclusion followed by multiphoton ionization of CH3**/CH3 (v´)** 4hv excitation of CH3Br to form CH3Br+ ruled out, for energetic reasons: Would involve followed by dissociation to form CH3+/CH3+ (v+) +Br/Br* higher KER´s than what is observed. To top Due to (2), (3) and (5) above: Check to see if CH3+ signals are observe for higher KERS 190908: Measured Ry(66019) for repeller voltage = 5kV (instead of 3kV): No signals obserd for higher KERs date:

5 1. Most likely candidate for the Br+ formation is the channel:
To top Br+: 1. Most likely candidate for the Br+ formation is the channel: 1hv excitation. followed by dissociation to form CH3 + Br/Br* followed by multiphoton excitation of Br/Br* (see slide 3) 2. Might be that the ratio of the two channels (with respect to Br and Br* formation) vary by going from Ry(66019) to Ry(72977) (see slide 3) Will be interesting to see how/whether the Br+ peak shifts „regularely“ as we go stepwise From Ry(66019) to Ry(72977) date:

6 KERs(xx): CH3+ CH2+ CH+ C+ CH3+ +Br- eV Ry(2hv/cm-1): 72977(7.9.16)
To top CH3+ CH2+ CH+ C+ Ry(2hv/cm-1): 72977(7.9.16) 66503(8.9.16) 66019 (6.9.16) CH3+ +Br- eV Gr:9, Lay:0 date created:

7 To top CH3+

8 KERs (xx): CH3+ eV Ry(2hv/cm-1): 78370(12.9.16) 77165(15.9.16)
To top CH3+ Ry(2hv/cm-1): 78370( ) 77165( ) 75905( ) 74249( ) 72977(7.9.16) 68684( ) 67275( )) 66503(8.9.16) 66019 (6.9.16) CH3+ +Br- eV Gr:11, Lay:2 date created:

9 KERs (xx): CH3+ eV Ry(2hv/cm-1): 78370(12.9.16) 77165(15.9.16)
To top CH3+ Ry(2hv/cm-1): 78370( ) 77165( ) 75905( ) ) 72973(7.9.16) 68684( ) 67275( )) 66503(8.9.16) 66019 (6.9.16) CH3+ +Br- eV Gr:11, Lay:2 date created:

10 KERs (xx): CH3+ eV Ry(2hv/cm-1): 79610 (16.09.16) 78370(12.9.16)
To top CH3+ Ry(2hv/cm-1): 79610 ( ) 78370( ) 77165( ) 75905( ) ) 72973(7.9.16) 68684( ) 67275( )) 66503(8.9.16) 66019 (6.9.16) CH3+ +Br- eV Gr:11, Lay:2 date created:

11 CH3+ REMPI specttra (1/2)6p w = 2 0 5d (3/2)6d w = 2 0 To top
REMPI spectra pxp

12 KERs (xx): CH3+ n =6; n2 n=7; w = 0; (3/2)np n = 6 w = 2 0; (1/2)np
To top CH3+ Ry(2hv/cm-1): 77165 ( ) ( ) 78370( ) ( ) 79610 ( ) n =6; n2 n=7; w = 0; (3/2)np CH3+ +Br- n = 6 w = ; (1/2)np n = 5; w = ; (3/2)nd eV Gr:27Lay:16 date created:

13 KERs (xx): CH3+ n =6; n2 n=7; w = 0; (3/2)np n = 6 w = 2 0; (1/2)np
To top CH3+ Ry(2hv/cm-1): 77165 ( ) ( ) 78370( ) ( ) 79610 ( ) n =6; n2 n=7; w = 0; (3/2)np CH3+ +Br- n = 6 w = ; (1/2)np n = 5; w = ; (3/2)nd eV Gr:27Lay:16 date created:

14 Images (xx): CH3+ CH3+ +Br- Ry(2hv/cm-1): 67275(13.9.16))
To top Ry(2hv/cm-1): 67275( )) 66503(8.9.16) 66019 (6.9.16) CH3+ +Br- Gr:11, Lay:2 date created:

15 KERs (xx): CH3+ CH3+ +Br- Ry(2hv/cm-1): 74249(15.9.16) 72973(7.9.16)
To top Ry(2hv/cm-1): 74249( ) 72973(7.9.16) 68684( ) CH3+ +Br- Gr:11, Lay:2 date created:

16 KERs (xx): CH3+ CH3+ +Br- Ry(2hv/cm-1): 78370(12.9.16) 77165(15.9.16)
To top Ry(2hv/cm-1): 78370( ) 77165( ) 75905( ) Gr:11, Lay:2 date created:

17 KERs (xx): CH3+ eV Ry(2hv/cm-1): 66019 (6.9.16; MOPO)
66019 ( ; Dye laser) To top CH3+ eV Gr:44, Lay:31

18 Clear shift of peaks as 66019 -> 66503
To top CH3+: Clear shift of peaks as > 66503 More peaks appear as > 66503 Peak structure looks like vibrational structure Possible interpretation: Molecular excitation Dissoci- ation Fragment ionization CH Br/Br* 1hvi Intensity CH3**(v´+n) + Br/Br* : CH3**(v´) Br/Br* 1hvpd CH3Br** (Ry) KER Vibrational ladder for a particular vibrational mode (for example OPLA vibration) 2hvr CH3Br

19 Possible explanation for rings observed in the CH3+ spectra:
To top CH3+ + Br**(i) CH3Br# (5) : CH3* + Br**(i) : (4) (3) (2) (1) CH3* + Br**(1) CH3Br** i.e. (2r+2+1i)REMPI 5hv CH3Br

20 To top CH2+

21 KERs (xx): CH2+ Ry(2hv/cm-1): CH3+ + Br- 79610(16.9.16) 78370(12.9.16)
To top CH2+ Ry(2hv/cm-1): 79610( ) 78370( ) 77165( ) 75905( ) 74249( ) 72973(7.9.16) 68684( ) 67275( )) 66503(8.9.16) 66019 (6.9.16) CH3+ + Br- Gr:12, Lay:3 date created:

22 Images (xx): CH2+ CH3+ + Br- Ry(2hv/cm-1): 67275(13.9.16))
To top Ry(2hv/cm-1): 67275( )) 66503(8.9.16) 66019 (6.9.16) CH3+ + Br- Gr:12, Lay:3 date created:

23 KERs (xx): CH2+ CH3+ + Br- Ry(2hv/cm-1): 75905(14.9.16 72973(7.9.16)
To top Ry(2hv/cm-1): 75905( 72973(7.9.16) 68684( ) CH3+ + Br- Gr:12, Lay:3 date created:

24 KERs (xx): CH2+ CH3+ + Br- Ry(2hv/cm-1): 78370(12.9.16) To top
Gr:12, Lay:3 date created:

25 To top CH+

26 KERs (xx): CH+ Ry(2hv/cm-1): 78370(12.9.16)
To top CH+ Ry(2hv/cm-1): 78370( ) 75905( ) 72977(7.9.16) 68684( ) 67273 ( ) 66019 (6.9.16) CH3+ + Br- Gr:23, Lay:12 date created:

27 To top 79Br+

28 KERs (xx): 79Br+ Ry(2hv/cm-1): CH3+ + Br- 79610(16.9.16)
To top 79Br+ Ry(2hv/cm-1): 79610( ) 78370( ) 77165( ) 75905( ) 72977(7.9.16) 68684( ) ( ) 66019 (6.9.16) CH3+ + Br- Gr:24, Lay:13 date created:

29 KERs (xx): 79Br+ Ry(2hv/cm-1): 68684(14.9.16) 67273 (13.9.16)
To top 79Br+ Ry(2hv/cm-1): 68684( ) ( ) 66019 (6.9.16) CH3+ + Br- Gr:24, Lay:13 date created:

30 KERs (xx): 79Br+ Ry(2hv/cm-1): 78370(12.9.16) 75905(14.9.16)
To top 79Br+ Ry(2hv/cm-1): 78370( ) 75905( ) 72977(7.9.16) CH3+ + Br- Gr:24, Lay:13 date created:

31 KERs (xx): 79Br+ Ry(2hv/cm-1): 79610(16.9.16) CH3+ + Br- To top
Gr:24, Lay:13

32 To top C79Br+

33 KERs (xx): C79Br+ Ry(2hv/cm-1): 78370(12.9.16) 72977(7.9.16)
To top C79Br+ Ry(2hv/cm-1): 78370( ) 72977(7.9.16) 68684( ) 67273 ( ) 66019 (6.9.16) CH3+ + Br- Gr:25, Lay:14 date created:

34 To top X vs Z data:

35 KERs (xx) & (zz): CH3+ eV Ry(2hv/cm-1): 66503(8.9.16) To top
Gr:13, Lay:4 date created:

36 KERs (xx) & (zz): CH3+ eV Ry(2hv/cm-1): 66019(6.9.16) To top
Gr:13, Lay:4 date created:

37 KERs (xx) & (zz): CH3+ eV Ry(2hv/cm-1): 77165(15.9.16) To top
Gr:28, Lay:17 date created:

38 KERs (xx) & (zz): CH3+ eV Ry(2hv/cm-1): 79610(16.9.16) To top
Gr:29, Lay:18 date created:

39 To top Energetics

40 Energetics with respect to possible CH3+ formation:
To top Study range cm-1 Energetics with respect to possible CH3+ formation: 33009 99029 66019 33009 r/A Gr:0; Lay:0

41 Energetics with respect to possible CH3+ formation:
To top Study range cm-1 Energetics with respect to possible CH3+ formation: 2hn 1hn r/A „various things“ Gr:0; Lay:0

42 NB: 2hv excitations 66019 – 68684 cm-1 < CH3**(3s 2A1) + Br/Br*
3hv excitations – cm-1 < CH3+ + Br/Br* 3hv excitations – cm-1 > CH3+ + Br/Br*

43 Energetics with respect to possible CH3+ formation
To top Study range cm-1 Energetics with respect to possible CH3+ formation And CH3 ionizations: 3hni 1hn r/A „various things“ Gr:0; Lay:0

44 NB: The cm-1 2hv excitation corresponds to switching from the need of three-photons to only need of two-photons to ionize CH3(X, 0000), which might explain the observed enhancements in some of the „1hv“ CH3+ signals (?)

45 To top refs in Theos, 2014 paper l/nm cm-1 year ref: Theo,2014 193
2014 2 215 to 251 39840 to 46512 1998 3 193,222 45045, 51813 1985 4 205 48780 1992 5 213, ca.230 43478, 46948 2007 6 216 46296 2009 7 240 to 280 35714 to 41667 2000 Gr:0; Lay:0 „1hv phd“

46 Energetics with respect to possible CH2+ formation:
To top Study range cm-1 Energetics with respect to possible CH2+ formation: 66019 33009 33009 99029 66019 33009 CH3**+Br r/A Gr:0; Lay:0

47 To top Images vs. KERs:

48 Ry(78370); 255.233 nm; Date: 160912 CH3+ CH2+ CH+ KERs: eV To top
Gr:17,Lay: Gr:18,Lay:7, Gr:19,Lay:8

49 Hint of a „shoulder“ from the „blob“
Ry(78370); nm; Date: To top CH3+ CH2+ Hint of a „shoulder“ from the „blob“ eV Gr:17,Lay:9

50 Ry(78370); 255.233 nm; Date: 160912 79Br+ C79Br+ KERs: eV To top
Gr:20,Lay:1; Gr:21, Lay:10

51 Comparison for C79Br+ and C81Br+(CH279Br+) signals for
Ry(67275; ): To top Virtually identical eV Gr:26, Lay:15 date created:

52 2hvr: signals following
Bands according to (T. Ridley et al. CH3Br paper, 2008) To top 66019 75686 75905 n = 5 [3/2]np;w 6 7 2 w = n3 n2 n1 n3 n2 5 [1/2]np;w 78370 6 79610 2 2 n3 n2 68461 68684 78225 72977 80640 80758 4 [3/2]nd;w 6 2 2 2 n3 n2 n1 4 [1/2]nd;w 5 72655 2 75418 78401 2hvr: signals following two-photon resonance excitation n3 n2 78193 80674 80881 1hv: Signals following one-photon excitation 77515 cm-1 REMPI spectra pxp; Gr:0; Lay:0

53 Relative intensity nhv excitations n = 1,2,3,… 3Dhn Threshold (2)
To top Relative intensity nhv excitations n = 1,2,3,… 3Dhn Threshold (2) Threshold (1) KER spectra

54 3hv excitations 3Dhn/eV Thresholds 79610 (16.09.16) 78370(12.9.16)
77165( ) 75905( ) ) Ry(2hv/cm-1) KERs: 72973(7.9.16) 68684( ) 67275( )) 66503(8.9.16) 66019 (6.9.16) To top 3hv excitations CH3(4f2E)+Br* CH3(4p2A2)+Br* CH3(4f2E)+Br CH3(4p2A2)+Br CH3(3d2A1)+Br* 3Dhn/eV CH3(3d2E)+Br* CH3(3d2A1)+Br CH3(3d2E)+Br CH3(3p2A2)+Br* CH3(3p2A2)+Br Thresholds CH3;one-color  Gr:61, Lay:45

55 1hv excitations Dhn/eV Thresholds Hot bands, i.e. due to
79610 ( ) 78370( ) 77165( ) 75905( ) ) Ry(2hv/cm-1) KERs: 72973(7.9.16) 68684( ) 67275( )) 66503(8.9.16) 66019 (6.9.16) To top 1hv excitations CH3(0010)+Br*(0.8722) CH3(1000)+Br*(0.8885) CH3(0001)+Br*(1.0555) CH3(0100)+Br*(1.1384) Dhn/eV (1.2562)CH3(0010)+Br CH3(0000)+Br* (1.2016) (1.2725)CH3(1000)+Br (1.4394)CH3(0001)+Br CH3(0100)+Br(1.5224) CH3(0000)+Br(1.5856) Thresholds Hot bands, i.e. due to Vibrationall „hot“ CH3Br# CH3;one-color  Gr:62, Lay:47

56 Effect of using different scaling factors (f) for transfering
To top Effect of using different scaling factors (f) for transfering pixels to eV: See slide above 3hv excitations # eV* eV Gr:61, / * Gr:63 # f = 2.72 x 10-5; *f= 2.98x10-5

57 Effect of using different
To top Effect of using different scaling factors (f) for transfering pixels to eV: CH3(0000)+Br*(1.2016) CH3(0001)+Br*(1.0555) CH3(0100)+Br(1.5224) CH3(0010)+Br*(0.8722) CH3(1000)+Br*(0.8885) See slide above 1hv excitations # eV eV* Gr:62, / * Gr:64 # f = 2.72 x 10-5; *f= 2.98x10-5

58 3hv excitations eV* 3Dhn To top 68684(14.9.16) 67275(13.9.16))
66503(8.9.16) 66019 (6.9.16) 3hv excitations eV* 3Dhn Gr:63 *f= 2.98x10-5

59 1hv excitations eV* To top 68684(14.9.16) 67275(13.9.16))
66503(8.9.16) 66019 (6.9.16) 1hv excitations eV* Gr:63 *f= 2.98x10-5

60 Judging from slides 58 and 59:
To top NB: Judging from slides 58 and 59: Although not perfect fit of vibrational peaks it seems to be slightly better for 3hv-shifts (hence CH3**(3p 2A2) + Br/Br* formation)) Rather than for 1hv -shift (hence CH3Br+ -> CH3+ + Br* formation -suggesting that the former mechanism holds.

61 excitations 1hv DE/eV Thresholds 79610 (16.09.16) 78370(12.9.16)
77165( ) 75905( ) Ry(2hv/cm-1) KERs: To top excitations 1hv CH3(0010)+Br*(0.8722) CH3(1000)+Br*(0.8885) CH3(0001)+Br*(1.0555) CH3(0100)+Br*(1.1384) b2 = CH3(0000)+Br*(1.2016) CH3(0010)+Br (1.2562) b2 = b2 = CH3(1000)+Br(1.2725) b2 = CH3(0001)+Br(1.4394) b2 = CH3(0100)+Br(1.5224) CH3(0000)+Br(1.5856) b2 = DE/eV b2 = Thresholds b2 = CH3;one-color  Gr:62, Lay:47

62 excitations 1hv DE/eV Thresholds corresponding to tranitions from
Ry(2hv/cm-1) KERs: 77165 ( ) ( ) 78370( ) ( ) 79610 ( ) To top excitations 1hv v5(def.) = 1 DE/eV v3(def.) = 1 v1(CH-str.) = 1 vi = 0 v5(def.) = 1 CH3+(v1,..v6) + Br* v3(def.) = 1 v1(CH-str.) = 1 vi = 0 CH3+(v1,..v6) + Br Thresholds corresponding to tranitions from CH3Br+(0,0,0,0..) (see next slide) CH3;one-color  Gr:61, Lay:45

63 1hv # Superexcited state Autoionization KER(Br*) KER(Br)
CH3+(v1,v2,..) + Br* CH3+(v1,v2,...) + Br CH3Br+ (0,0…) Superexcited state Autoionization

64 2hvr: signals following
Ry(2hv/cm-1) KERs: To top Example of a 1hv and 1hvr signal contributions in a CH3 KER spectrum: 77165 ( ) 1hv: Signals following one-photon excitation 2hvr: signals following two-photon resonance excitation eV Gr:62, Lay:46

65 Vibrational analysis of the CH3**(3p 2A2) Rydberg state:
To top Vibrational analysis of the CH3**(3p 2A2) Rydberg state: Vibrational energies from NIST for CH3*2: 3p 2A2 state Slide 4*: Vibrational energy difference estimated around ~1000 cm-1 eV Estimation of peak v=n for OPLA CH3*2 => v=10 CH3*3 => v=4 CH3*4 => v=4 *….Dropbox/REMPI/From Arnar/CH3Br/Focus on first 4 peaks _regarding vibrational ladder.pptx ;

66 D0 stands for CH3Br -> CH3 + Br
66503 cm-1 Slide 5*: D0 stands for CH3Br -> CH3 + Br *….Dropbox/REMPI/From Arnar/CH3Br/Focus on first 4 peaks _regarding vibrational ladder.pptx ;

67 D0 stands for CH3Br -> CH3 + Br
66503 cm-1 Slide 5*: D0 stands for CH3Br -> CH3 + Br eV *….Dropbox/REMPI/From Arnar/CH3Br/Focus on first 4 peaks _regarding vibrational ladder.pptx ;

68 Slide 9*: *….Dropbox/REMPI/From Arnar/CH3Br/Focus on first 4 peaks _regarding vibrational ladder.pptx ;

69 Slide 10*: *….Dropbox/REMPI/From Arnar/CH3Br/Focus on first 4 peaks _regarding vibrational ladder.pptx ;

70 To top Angular distributions: X files

71 To top CH3+:

72 CH3+ pix q Ry(2hv/cm-1): 66019(6.9.16) To top b2 = 1.3838 b2 = 1.2627
Gr:32, Lay:19 Gr:24, Lay:10 angul.d. 

73 CH3+ pix q Ry(2hv/cm-1): 66503(8.9.16) To top b2 = 0.88204
Gr:33, Lay:20 Gr:24, Lay:11 angul.d. 

74 CH3+ pix q Ry(2hv/cm-1): 67275(13.9.16) To top b2 = 1.1489 b2 = 1.1593
Gr:34, Lay:21 Gr:22, Lay:12 angul.d. 

75 CH3+ pix q Ry(2hv/cm-1): 68684(14.9.16) To top b2 = 0.81842
Gr:35, Lay:22 Gr:26, Lay:13 angul.d. 

76 CH3+ pix q Ry(2hv/cm-1): 72977(7.9.16) To top b2 = 2.0226
Gr:38, Lay:25 Gr:28, Lay:16 angul.d. 

77 CH3+ pix q Ry(2hv/cm-1): 74249(15.9.16) To top b2 = 1.3393
Gr:37, Lay:24 Gr:27, Lay:15 angul.d. 

78 CH3+ pix q Ry(2hv/cm-1): 75905(14.9.16) To top b2 = -0.049622
Gr:36, Lay:23 Gr:25, Lay:14 angul.d. 

79 CH3+ X Z eV q Ry(2hv/cm-1): 77165(15.9.16) To top b2 = 1.0978
Gr:20, Lay:8

80 CH3+ X Z eV q Ry(2hv/cm-1): 79610(16.9.16) To top b2 = 1.4741
Gr:19, Lay:7

81 CH3+ Gr:11, Lay:2 To top Gr:21, Lay:9

82 CH3+ To top b2 Gr:47

83 To top CH2+: Under construction

84 CH2+ pix q Ry(2hv/cm-1): 66019(6.9.16) To top b2 = 2.0185 b2 = 1.7032
Gr:40, Lay:27 Gr:50, Lay:37 angul.d. 

85 CH2+ pix q Ry(2hv/cm-1): 66503(8.9.16) To top b2 = 1.0753 b2 = 1.0054
Gr:41, Lay:28 Gr:51, Lay:38 angul.d. 

86 CH2+ pix q Ry(2hv/cm-1): 67275(13.9.16) To top b2 = 1.3756 b2 = 1.2916
1.1152 b2 = 1.059 b2 = pix q Gr:42, Lay:29 Gr:52, Lay:39 angul.d. 

87 CH2+ pix q Ry(2hv/cm-1): 68684(14.9.16) To top b2 = 1.7498 b2 = 1.4938
1.3614 b2 = pix b2 = q Gr:43, Lay:30 Gr:53, Lay:40 angul.d. 

88 CH3+ To top b2 Gr:58

89 CH2+ To top b2 increases with KER, i.e. Parallel character increases with KER -for all the Ry resonances (66019 – cm-1)

90 To top CH+:

91 CH+ pix Ry(2hv/cm-1): 66019 (6.9.16) To top b2 = 2.1339
Gr:51, Lay:37 Gr:55, Lay:42 angul.d. 

92 CH+ pix Ry(2hv/cm-1): 67275 (13.9.16) To top b2 = 1.2698 b2 = 1.3594
Gr:52, Lay:38 Gr:55, Lay:42 angul.d. 

93 CH+ pix Ry(2hv/cm-1): 68684(14.9.16) To top b2 = 1.5498
Gr:53, Lay:39 Gr:55, Lay:42 angul.d. 

94 CH+ pix Ry(2hv/cm-1): 72977(7.9.16) Ry(2hv/cm-1): 72977(7.9.16) To top
b2 = Ry(2hv/cm-1): 72977(7.9.16) pix Gr:54, Lay:40 Gr:55, Lay:42 angul.d. 

95 CH+ pix Ry(2hv/cm-1): 75905(14.9.16) To top b2 = 1.1067
Gr:55, Lay:41 Gr:55, Lay:42 angul.d. 

96 CH+ pix Ry(2hv/cm-1): 78370(12.9.16) To top b2 = 0.9554
Gr:56, Lay:42 Gr:55, Lay:42 angul.d. 

97 CH+ To top b2 Gr:57

98 To top Br+:

99 Br+ pix q Ry(2hv/cm-1): 66019 (6.9.16) To top b2 = 2.2123
Gr:38, Lay:26 angul.d. 

100 Br+ pix q Ry(2hv/cm-1): 67273 (13.9.16) To top b2 = 1.553
Gr:37, Lay:25 angul.d. 

101 Br+ pix q Ry(2hv/cm-1): 68684(14.9.16) To top b2 = 1.5328
Gr:36, Lay:24 angul.d. 

102 Br+ pix q Ry(2hv/cm-1): 72977(7.9.16) Ry(2hv/cm-1): 72977(7.9.16)
To top Br+ Ry(2hv/cm-1): 72977(7.9.16) b2 = Ry(2hv/cm-1): 72977(7.9.16) pix q Gr:29, Lay:17 angul.d. 

103 Br+ pix q Ry(2hv/cm-1): 75905(14.9.16) To top b2 = 1.1844
Gr:39, Lay:27 angul.d. 

104 Br+ pix q Ry(2hv/cm-1): 77165(15.9.16) To top b2 = 1.1202 b2 =0.65639
Gr:35, Lay:23 angul.d. 

105 Br+ pix q Ry(2hv/cm-1): 78370(12.9.16) To top b2 = 1.2279 b2 =1.0963
Gr:34, Lay:22 angul.d. 

106 Br+ pix q Ry(2hv/cm-1): 79610(16.9.16) To top b2 =1.28 b2 =1.0372
Gr:33, Lay:21 angul.d. 

107 Br+ Br+ Low KER broad peak b2 To top
Gr:58

108 To top C79Br+

109 C79Br+ pix Ry(2hv/cm-1): 66019 (6.9.16) To top b2 =0.59096
Gr:45, Lay:32 Gr:54, Lay:41 angul.d. 

110 C79Br+ pix Ry(2hv/cm-1): 67273 (13.9.16) To top b2 =0.09929
Gr:46, Lay:33 Gr:54, Lay:41 angul.d. 

111 C79Br+ pix Ry(2hv/cm-1): 68684(14.9.16) To top b2 =0.18756
Gr:47, Lay:34 Gr:54, Lay:41 angul.d. 

112 C79Br+ pix Ry(2hv/cm-1): 72977(7.9.16) Ry(2hv/cm-1): 72977(7.9.16)
To top Ry(2hv/cm-1): 72977(7.9.16) b2 = Ry(2hv/cm-1): 72977(7.9.16) pix Gr:48, Lay:35 Gr:54, Lay:41 angul.d. 

113 C79Br+ pix Ry(2hv/cm-1): 78370(12.9.16) To top b2 =0.059484
Gr:49, Lay:36 Gr:54, Lay:41 angul.d. 

114 C79Br+ CBr+ KER broad peaks b2 To top
Gr:50

115 Comparison of CH3 and CH2 KERs
Pavle in and , See slides 116 – 125:

116 66019 cm-1 ( nm)   CH3 CH2

117 66503 cm-1 ( nm)   CH3 CH2

118 67275 cm-1 ( nm) CH3 CH2

119 68684 cm-1 ( nm) CH3 CH2

120 72977 cm-1 ( nm) CH3 CH2

121 74249 cm-1 ( nm) CH3 CH2

122 75905 cm-1 ( nm) CH3 CH2

123 77165 cm-1 ( nm) CH3 CH2

124 78370 cm-1 ( nm) CH3 CH2

125 79610 cm-1 ( nm) CH3 CH2

126 66019 cm-1 ( nm)   CH3 CH2

127 66503 cm-1 ( nm)   CH3 CH2

128 67275 cm-1 ( nm) CH3 CH2

129 68684 cm-1 ( nm) CH3 CH2

130 Possible explanation for the similarities:
CH2+ + e- + HBr CH3++ e- + Br/Br* Angular distribution determining process: 1hni 1hni (?) CH3Br# 1hnpd 1hnpd CH3** + Br/Br* CH2** + HBr ? Dissociation involves one bond break: C-Br Dissociation involves effective „one bond break“: C-H and C-Br broken and H-Br formed CH3Br** 2hnr The energetics is being investigated by Arnar (170825) CH3Br

131 As a matter of fact the images/angular distributions/b2 values for CH+ also resemble
those for CH3+ and CH2+ : Thus, for example next slide. We might therefore also have a common excitation (2hnr + 1hnpd) process to form CH or CH* or CH** prior to photoionization, for example (?): CH3Br# -> (CH/CH*/CH**) + H2 + Br followed by (CH/CH*/CH**) + mhn -> CH+ + e- NB: the ion intensities of vary as CH+ < CH2+ < CH3+ according to Mass resolved REMPI: The energetics needs to be checked

132 CH3+ b2 CH2+ CH+

133 Furthermore: it has been argured:
„C(3 P) and C*(1 D) atom and HBr intermediate production, detected by (2+1) REMPI, most probably is due to photodissociation of CH3Br via two-photon excitations to Rydberg states followed by an unusual breaking of four bonds and formation of two bonds to give the fragments H2 + C/C* + HBr prior to ionization.” See:


Download ppt "CH3Br, one-color exp.: CHn+, iBr+ and CiBr+ ions vs CH3Br(Ry) states: https://notendur.hi.is/~agust/rannsoknir/Crete16/PPT-160908-CH3Br(2).pptx Content: pages:"

Similar presentations


Ads by Google