Download presentation
Presentation is loading. Please wait.
1
Chapter 18- Gene Regulation Part 3
2
The Life Cycle of Drosophila
In Drosophila, cytoplasmic determinants in the unfertilized egg determine the axes before fertilization After fertilization, the embryo develops into a segmented larva with three larval stages
3
Figure 18.17 Key developmental events in the life cycle of Drosophila
Head Thorax Abdomen 0.5 mm Dorsal Right BODY AXES Anterior Posterior Left Ventral (a) Adult Follicle cell 1 Egg cell developing within ovarian follicle Nucleus Egg cell Nurse cell 2 Unfertilized egg Egg shell Depleted nurse cells Fertilization Laying of egg 3 Fertilized egg Figure Key developmental events in the life cycle of Drosophila Embryonic development 4 Segmented embryo 0.1 mm Body segments Hatching 5 Larval stage (b) Development from egg to larva
4
Head Thorax Abdomen 0.5 mm Dorsal Right BODY AXES Anterior Posterior
Fig a Head Thorax Abdomen 0.5 mm Dorsal Right BODY AXES Anterior Posterior Figure Key developmental events in the life cycle of Drosophila Left Ventral (a) Adult
5
(b) Development from egg to larva
Fig b Follicle cell 1 Egg cell developing within ovarian follicle Nucleus Egg cell Nurse cell 2 Unfertilized egg Egg shell Depleted nurse cells Fertilization Laying of egg 3 Fertilized egg Embryonic development Figure Key developmental events in the life cycle of Drosophila 4 Segmented embryo 0.1 mm Body segments Hatching 5 Larval stage (b) Development from egg to larva
6
Genetic Analysis of Early Development: Scientific Inquiry
Edward B. Lewis, Christiane Nüsslein-Volhard, and Eric Wieschaus won a Nobel 1995 Prize for decoding pattern formation in Drosophila Lewis demonstrated that genes direct the developmental process
7
Eye Leg Antenna Wild type Mutant Fig. 18-18
Figure Abnormal pattern formation in Drosophila Wild type Mutant
8
Eye Antenna Wild type Fig. 18-18a
Figure Abnormal pattern formation in Drosophila Antenna Wild type
9
Fig b Figure Abnormal pattern formation in Drosophila Leg Mutant
10
Nüsslein-Volhard and Wieschaus studied segment formation
They created mutants, conducted breeding experiments, and looked for corresponding genes Breeding experiments were complicated by embryonic lethals, embryos with lethal mutations They found 120 genes essential for normal segmentation
11
Animation: Development of Head-Tail Axis in Fruit Flies
Axis Establishment Maternal effect genes encode for cytoplasmic determinants that initially establish the axes of the body of Drosophila These maternal effect genes are also called egg-polarity genes because they control orientation of the egg and consequently the fly Animation: Development of Head-Tail Axis in Fruit Flies
12
Bicoid: A Morphogen Determining Head
Structures One maternal effect gene, the bicoid gene, affects the front half of the body An embryo whose mother has a mutant bicoid gene lacks the front half of its body and has duplicate posterior structures at both ends
13
Fig EXPERIMENT Tail Head T1 T2 A8 T3 A7 A1 A2 A3 A4 A5 A6 Wild-type larva Tail Tail A8 A8 A7 A6 A7 Mutant larva (bicoid) RESULTS Figure Is Bicoid a morphogen that determines the anterior end of a fruit fly? Fertilization, translation of bicoid mRNA 100 µm Anterior end Bicoid mRNA in mature unfertilized egg Bicoid protein in early embryo CONCLUSION Nurse cells Egg bicoid mRNA Developing egg Bicoid mRNA in mature unfertilized egg Bicoid protein in early embryo
14
EXPERIMENT Tail Head Wild-type larva Tail Tail Mutant larva (bicoid)
Fig a EXPERIMENT Tail Head A8 T1 T2 T3 A7 A1 A6 A2 A3 A4 A5 Wild-type larva Tail Tail Figure Is Bicoid a morphogen that determines the anterior end of a fruit fly? A8 A8 A7 A7 A6 Mutant larva (bicoid)
15
RESULTS Anterior end Bicoid mRNA in mature unfertilized egg
Fig b RESULTS Fertilization, translation of bicoid mRNA 100 µm Anterior end Figure Is Bicoid a morphogen that determines the anterior end of a fruit fly? Bicoid mRNA in mature unfertilized egg Bicoid protein in early embryo
16
CONCLUSION Nurse cells Egg bicoid mRNA Developing egg
Fig c CONCLUSION Nurse cells Egg bicoid mRNA Developing egg Figure Is Bicoid a morphogen that determines the anterior end of a fruit fly? Bicoid mRNA in mature unfertilized egg Bicoid protein in early embryo
17
This phenotype suggests that the product of the mother’s bicoid gene is concentrated at the future anterior end This hypothesis is an example of the gradient hypothesis, in which gradients of substances called morphogens establish an embryo’s axes and other features
18
The bicoid research is important for three reasons:
– It identified a specific protein required for some early steps in pattern formation – It increased understanding of the mother’s role in embryo development – It demonstrated a key developmental principle that a gradient of molecules can determine polarity and position in the embryo
19
Concept 18.5: Cancer results from genetic changes that affect cell cycle control
The gene regulation systems that go wrong during cancer are the very same systems involved in embryonic development
20
Types of Genes Associated with Cancer
Cancer can be caused by mutations to genes that regulate cell growth and division Tumor viruses can cause cancer in animals including humans
21
Oncogenes and Proto-Oncogenes
Oncogenes are cancer-causing genes Proto-oncogenes are the corresponding normal cellular genes that are responsible for normal cell growth and division Conversion of a proto-oncogene to an oncogene can lead to abnormal stimulation of the cell cycle
22
within a control element within the gene
Fig Proto-oncogene DNA Translocation or transposition: Gene amplification: Point mutation: within a control element within the gene New promoter Oncogene Oncogene Figure Genetic changes that can turn proto-oncogenes into oncogenes Normal growth- stimulating protein in excess Normal growth-stimulating protein in excess Normal growth- stimulating protein in excess Hyperactive or degradation- resistant protein
23
Proto-oncogenes can be converted to oncogenes by
Movement of DNA within the genome: if it ends up near an active promoter, transcription may increase Amplification of a proto-oncogene: increases the number of copies of the gene Point mutations in the proto-oncogene or its control elements: causes an increase in gene expression
24
Tumor-Suppressor Genes
Tumor-suppressor genes help prevent uncontrolled cell growth Mutations that decrease protein products of tumor-suppressor genes may contribute to cancer onset Tumor-suppressor proteins Repair damaged DNA Control cell adhesion Inhibit the cell cycle in the cell-signaling pathway
25
Interference with Normal Cell-Signaling Pathways
Mutations in the ras proto-oncogene and p53 tumor-suppressor gene are common in human cancers Mutations in the ras gene can lead to production of a hyperactive Ras protein and increased cell division
26
Figure 18.21 Signaling pathways that regulate cell division
Growth factor MUTATION Hyperactive Ras protein (product of oncogene) issues signals on its own Ras 3 G protein GTP Ras GTP 2 Receptor 4 Protein kinases (phosphorylation cascade) NUCLEUS 5 Transcription factor (activator) DNA Gene expression Protein that stimulates the cell cycle (a) Cell cycle–stimulating pathway 2 Protein kinases MUTATION Defective or missing transcription factor, such as p53, cannot activate UV light 3 Active form of p53 1 DNA damage in genome Figure Signaling pathways that regulate cell division DNA Protein that inhibits the cell cycle (b) Cell cycle–inhibiting pathway EFFECTS OF MUTATIONS Protein overexpressed Protein absent Cell cycle overstimulated Increased cell division Cell cycle not inhibited (c) Effects of mutations
27
(a) Cell cycle–stimulating pathway
Fig a 1 Growth factor 1 MUTATION Hyperactive Ras protein (product of oncogene) issues signals on its own Ras 3 G protein GTP Ras GTP 2 Receptor 4 Protein kinases (phosphorylation cascade) NUCLEUS 5 Transcription factor (activator) DNA Figure Signaling pathways that regulate cell division Gene expression Protein that stimulates the cell cycle (a) Cell cycle–stimulating pathway
28
(b) Cell cycle–inhibiting pathway
Fig b 2 Protein kinases MUTATION Defective or missing transcription factor, such as p53, cannot activate 3 Active form of p53 UV light 1 DNA damage in genome DNA Figure Signaling pathways that regulate cell division Protein that inhibits the cell cycle (b) Cell cycle–inhibiting pathway
29
(c) Effects of mutations
Fig c EFFECTS OF MUTATIONS Protein overexpressed Protein absent Cell cycle overstimulated Increased cell division Cell cycle not inhibited Figure Signaling pathways that regulate cell division (c) Effects of mutations
30
Suppression of the cell cycle can be important in the case of damage to a cell’s DNA; p53 prevents a cell from passing on mutations due to DNA damage Mutations in the p53 gene prevent suppression of the cell cycle
31
The Multistep Model of Cancer Development
Multiple mutations are generally needed for full-fledged cancer; thus the incidence increases with age At the DNA level, a cancerous cell is usually characterized by at least one active oncogene and the mutation of several tumor-suppressor genes
32
EFFECTS OF MUTATIONS Fig. 18-22
Colon EFFECTS OF MUTATIONS Loss of tumor- suppressor gene APC (or other) 1 Activation of ras oncogene 2 Loss of tumor-suppressor gene p53 4 Colon wall Loss of tumor-suppressor gene DCC 3 Additional mutations 5 Figure A multistep model for the development of colorectal cancer Normal colon epithelial cells Small benign growth (polyp) Larger benign growth (adenoma) Malignant tumor (carcinoma)
33
Colon Colon wall Normal colon epithelial cells Fig. 18-22a
Figure A multistep model for the development of colorectal cancer Normal colon epithelial cells
34
1 Small benign growth (polyp) Loss of tumor- suppressor gene
Fig b Loss of tumor- suppressor gene APC (or other) 1 Small benign growth (polyp) Figure A multistep model for the development of colorectal cancer
35
Activation of ras oncogene 2 3 Larger benign growth (adenoma) Loss of
Fig c Activation of ras oncogene 2 Loss of tumor-suppressor gene DCC 3 Larger benign growth (adenoma) Figure A multistep model for the development of colorectal cancer
36
Additional mutations Malignant tumor (carcinoma) Loss of 4
Fig d Loss of tumor-suppressor gene p53 4 Additional mutations 5 Malignant tumor (carcinoma) Figure A multistep model for the development of colorectal cancer
37
Inherited Predisposition and Other Factors Contributing to Cancer
Individuals can inherit oncogenes or mutant alleles of tumor-suppressor genes Inherited mutations in the tumor-suppressor gene adenomatous polyposis coli are common in individuals with colorectal cancer Mutations in the BRCA1 or BRCA2 gene are found in at least half of inherited breast cancers
38
Fig Figure Tracking the molecular basis of breast cancer
39
Operon Promoter Genes A B C Operator RNA polymerase A B C Polypeptides
Fig. 18-UN1 Operon Promoter Genes A B C Operator RNA polymerase Fig. 18-UN1 A B C Polypeptides
40
no corepressor present Corepressor
Fig. 18-UN2 Genes expressed Genes not expressed Promoter Genes Operator Active repressor: corepressor bound Inactive repressor: no corepressor present Corepressor Fig. 18-UN2
41
Genes not expressed Genes expressed Promoter Operator Genes
Fig. 18-UN3 Genes not expressed Genes expressed Promoter Operator Genes Fig. 18-UN2 Active repressor: no inducer present Inactive repressor: inducer bound Fig. 18-UN3
42
Protein processing and degradation
Fig. 18-UN4 Chromatin modification Transcription • Genes in highly compacted chromatin are generally not transcribed. • Regulation of transcription initiation: DNA control elements bind specific transcription factors. • Histone acetylation seems to loosen chromatin structure, enhancing transcription. Bending of the DNA enables activators to contact proteins at the promoter, initiating transcription. • DNA methylation generally reduces transcription. • Coordinate regulation: Enhancer for liver-specific genes Enhancer for lens-specific genes Chromatin modification Transcription RNA processing • Alternative RNA splicing: RNA processing Primary RNA transcript mRNA degradation Translation mRNA or Fig. 18-UN4 Protein processing and degradation Translation • Initiation of translation can be controlled via regulation of initiation factors. mRNA degradation • Each mRNA has a characteristic life span, determined in part by sequences in the 5 and 3 UTRs. Protein processing and degradation • Protein processing and degradation by proteasomes are subject to regulation.
43
Chromatin modification
Fig. 18-UN5 Chromatin modification • Small RNAs can promote the formation of heterochromatin in certain regions, blocking transcription. Chromatin modification Transcription Translation RNA processing • miRNA or siRNA can block the translation of specific mRNAs. mRNA degradation Translation Protein processing and degradation Fig. 18-UN5 mRNA degradation • miRNA or siRNA can target specific mRNAs for destruction.
44
Enhancer Promoter Gene 1 Gene 2 Gene 3 Gene 4 Gene 5
Fig. 18-UN6 Enhancer Promoter Gene 1 Gene 2 Gene 3 Fig. 18-UN6 Gene 4 Gene 5
45
Fig. 18-UN7 Fig. 18-UN7
46
Fig. 18-UN8 Fig. 18-UN8
47
You should now be able to:
Explain the concept of an operon and the function of the operator, repressor, and corepressor Explain the adaptive advantage of grouping bacterial genes into an operon Explain how repressible and inducible operons differ and how those differences reflect differences in the pathways they control
48
Explain how DNA methylation and histone acetylation affect chromatin structure and the regulation of transcription Define control elements and explain how they influence transcription Explain the role of promoters, enhancers, activators, and repressors in transcription control
49
Explain how eukaryotic genes can be coordinately expressed
Describe the roles played by small RNAs on gene expression Explain why determination precedes differentiation Describe two sources of information that instruct a cell to express genes at the appropriate time
50
Explain how maternal effect genes affect polarity and development in Drosophila embryos
Explain how mutations in tumor-suppressor genes can contribute to cancer Describe the effects of mutations to the p53 and ras genes
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.