Presentation is loading. Please wait.

Presentation is loading. Please wait.

Medan Listrik Statis II (Material, Kapasitansi, Numerik Simulasi)

Similar presentations


Presentation on theme: "Medan Listrik Statis II (Material, Kapasitansi, Numerik Simulasi)"— Presentation transcript:

1 Medan Listrik Statis II (Material, Kapasitansi, Numerik Simulasi)
Medan Elektromagnetik. Sukiswo Medan Listrik Statis II (Material, Kapasitansi, Numerik Simulasi) Sukiswo Medan Elektromagnetik. Sukiswo

2 Sukiswo, Medan Elektromagnetik
ELECTROSTATICS - MATERIALS Sukiswo, Medan Elektromagnetik

3 Medan Elektromagnetik. Sukiswo
CONDUCTORS and DIELECTRICS Conductors Dielectrics High conductivities; s (for Copper) ~ 5.8x107 S/m Low conductivities; s (for Rubber) ~ 1x10-15 S/m or 1/W-m Semiconductors (mid s’s) Permittivities, e = 1-100e0 Note: e0 is the permittivity of free space/vacuum = x F/m Medan Elektromagnetik. Sukiswo

4 Medan Elektromagnetik. Sukiswo
CONDUCTORS Most electrons are stuck to the nucleus But, 1 or 2 electrons per atom are free to move This means that if you apply an external E-field, the free electrons will move Lattice of Nuclei Medan Elektromagnetik. Sukiswo

5 Medan Elektromagnetik. Sukiswo
CONDUCTORS - + conductor electrons Apply external E-field, Force on electrons causes free electrons to move Charge displacement causes response E-field (opposite to applied external E-field) Medan Elektromagnetik. Sukiswo

6 Medan Elektromagnetik. Sukiswo
CONDUCTORS The electrons keep moving until, This means that: , in a conductor Conductor is equipotential Medan Elektromagnetik. Sukiswo

7 Medan Elektromagnetik. Sukiswo
DIELECTRICS electron cloud + + nucleus electron cloud centered on nucleus Cloud shifts to setup Medan Elektromagnetik. Sukiswo

8 Medan Elektromagnetik. Sukiswo
DIELECTRICS Define: dipole moment Polarization partially cancels applied Field Medan Elektromagnetik. Sukiswo

9 is due to bound/dielectric charge and free charge
DIELECTRICS subtracts out bound charge Define: Displacement Flux Density ( C/m2 ) Electric Field (V/m) is due to bound/dielectric charge and free charge is due to bound/dielectric charge only and opposite sign is due to free charge only Medan Elektromagnetik. Sukiswo

10 Medan Elektromagnetik. Sukiswo
FREE CHARGES Examples of free charges: rs on conductor electron beam doped region of semi-conductor Gauss’ Law uses just free charge Most general form Medan Elektromagnetik. Sukiswo

11 Medan Elektromagnetik. Sukiswo
DIELECTRICS Don’t need to know about bound charges to find Many materials have Define , where Typically, Medan Elektromagnetik. Sukiswo

12 Medan Elektromagnetik. Sukiswo
DIELECTRIC BREAKDOWN Example: Arc in Air If E-field is too large, it will pull electrons off from atom These electrons are accelerated by the E-field These accelerated electrons then collide with more atoms that knock off more electrons This is an AVALANCHE PROCESS Damages materials - there is a Voltage limit on components, cables in air : = 30 kV/cm BREAKDOWN OCCURS if Medan Elektromagnetik. Sukiswo

13 Medan Elektromagnetik. Sukiswo
BOUNDARY CONDITIONS - Normal Components all derived from Maxwell’s equations NORMAL COMPONENT Take h << a (a thin disc) a Material 1 TOP h Material 2 BOTTOM Gaussian Surface Medan Elektromagnetik. Sukiswo

14 Medan Elektromagnetik. Sukiswo
BOUNDARY CONDITIONS - Normal Components Case 1: REGION 2 is a CONDUCTOR, D2 = E2 =0 Case 2: REGIONS 1 & 2 are DIELECTRICS with rs = 0 Can only really get rs with conductors Medan Elektromagnetik. Sukiswo

15 Medan Elektromagnetik. Sukiswo
BOUNDARY CONDITIONS - Tangential Components w Material 1 h << w h Material 2 Note: If region 2 is a conductor E1t = 0 Outside conductor E and D are normal to the surface Medan Elektromagnetik. Sukiswo

16 Sukiswo, Medan Elektromagnetik
ELECTROSTATICS - CAPACITANCE Sukiswo, Medan Elektromagnetik

17 Medan Elektromagnetik. Sukiswo
CAPACITANCE of Coaxial Cable a b inner conductor outer conductor In previous class, for coaxial cable: Note: very general result charge on 1 conductor Define: DV between conductors Note that: Medan Elektromagnetik. Sukiswo

18 Medan Elektromagnetik. Sukiswo
Calculation of CAPACITANCE Problems on calculation of C Find Q 1. Method - Assume rs (use symmetry) Find V(rs) 2. Alternate method - Assume V and find Q Medan Elektromagnetik. Sukiswo

19 Medan Elektromagnetik. Sukiswo
CAPACITANCE - parallel plate capacitor Use Gauss’ Law, z=d z=0 C of Parallel Plate capacitor Medan Elektromagnetik. Sukiswo

20 Medan Elektromagnetik. Sukiswo
CAPACITANCE - parallel plate capacitor Parallel Plate Capacitance increase A increase e decrease d This is how electrolytics increase C To get large C Do problem 1a or 2a & 2b Medan Elektromagnetik. Sukiswo

21 Medan Elektromagnetik. Sukiswo
CAPACITANCE - ENERGY METHOD energy stored in capacitors is stored in the E-field Define stored energy: Substitute values of C and V for parallel plate capacitor: Energy Density Volume Medan Elektromagnetik. Sukiswo

22 Medan Elektromagnetik. Sukiswo
CAPACITANCE - ENERGY METHOD In general we can write the total stored energy as: or Medan Elektromagnetik. Sukiswo

23 Medan Elektromagnetik. Sukiswo
CAPACITANCE - ENERGY METHOD Use the Energy Formulation to compute C for the Parallel Plate Capacitor We know that, Compute TOTAL ENERGY: Medan Elektromagnetik. Sukiswo

24 Medan Elektromagnetik. Sukiswo
CAPACITANCE Any 2 conductors have capacitance Example: lines on circuit board Theremin wires and cables Medan Elektromagnetik. Sukiswo

25 Sukiswo, Medan Elektromagnetik
ELECTROSTATICS - Numerical Simulation Sukiswo, Medan Elektromagnetik

26 Medan Elektromagnetik. Sukiswo
Direct Computation of V If we can express entire problem in terms of V then: we can solve directly for V derive all other quantities e.g. E-field, D-field, C and r This approach can be used if conductor defines Outer Boundary can be SYMMETRIC or NON-SYMMETRIC systems Why is this a useful approach?? V is a scalar field - easier to manipulate than E-field We can control V on conductors Can apply numerical methods to solve problem Medan Elektromagnetik. Sukiswo

27 Medan Elektromagnetik. Sukiswo
Use of Laplace and Poisson’s Equations Start with 2 of MAXWELL’s equations: & In rectangular coordinates: Medan Elektromagnetik. Sukiswo

28 Medan Elektromagnetik. Sukiswo
Use of Laplace and Poisson’s Equations Poisson’s equation: Laplace’s equation: (when r = 0) Medan Elektromagnetik. Sukiswo

29 Medan Elektromagnetik. Sukiswo
Numerical Solution: Finite Difference Method Use the FINITE DIFFERENCE Technique for solving problems Solve for approximate V on the Grid - for 2-D Problem Vtop h Vleft Vcenter Vright Vcenter at (x,y) = (0,0) Vbottom h Medan Elektromagnetik. Sukiswo

30 Medan Elektromagnetik. Sukiswo
Numerical Solution: Finite Difference Method At (x,y) = (h/2,0) Vtop Vbottom Vleft Vcenter h Vright At (x,y) = (-h/2,0) Medan Elektromagnetik. Sukiswo

31 Medan Elektromagnetik. Sukiswo
Numerical Solution: Finite Difference Method Now, Can get similar expression for Medan Elektromagnetik. Sukiswo

32 Medan Elektromagnetik. Sukiswo
Numerical Solution: Finite Difference Method Finally we obtain the following expression: Rearrange the equation to solve for Vcenter : Poisson Equation Solver Laplace Equation Solver Medan Elektromagnetik. Sukiswo

33 Medan Elektromagnetik. Sukiswo
Numerical Solution: Example 60V 10V 100V 30V Solution Technique - by Iteration V1 Guess a solution : V=0 everywhere except boundaries V2 V3 V4 V1= V2 = V3 = V4 = 0 Put new values back Start: Medan Elektromagnetik. Sukiswo

34 Medan Elektromagnetik. Sukiswo
Numerical Solution - use of EXCEL Spreadsheet To get an accurate solution, need lots of points - one way is to use a SPREADSHEET In spreadsheet, A1 A1 to A31 set boundary voltage = 0Volts Set these cells to 100 Copy B2 formula to rest of cells A31 Medan Elektromagnetik. Sukiswo

35 Medan Elektromagnetik. Sukiswo
Numerical Solution: Problems 3c. At point P, what is rs ? Get rs from Boundary Conditions: Approximate 3d. Use spreadsheet to add columns: 3e. Use C=Q/V Medan Elektromagnetik. Sukiswo


Download ppt "Medan Listrik Statis II (Material, Kapasitansi, Numerik Simulasi)"

Similar presentations


Ads by Google