Download presentation
Presentation is loading. Please wait.
Published byVerawati Gunardi Modified over 7 years ago
1
Medan Listrik Statis II (Material, Kapasitansi, Numerik Simulasi)
Medan Elektromagnetik. Sukiswo Medan Listrik Statis II (Material, Kapasitansi, Numerik Simulasi) Sukiswo Medan Elektromagnetik. Sukiswo
2
Sukiswo, Medan Elektromagnetik
ELECTROSTATICS - MATERIALS Sukiswo, Medan Elektromagnetik
3
Medan Elektromagnetik. Sukiswo
CONDUCTORS and DIELECTRICS Conductors Dielectrics High conductivities; s (for Copper) ~ 5.8x107 S/m Low conductivities; s (for Rubber) ~ 1x10-15 S/m or 1/W-m Semiconductors (mid s’s) Permittivities, e = 1-100e0 Note: e0 is the permittivity of free space/vacuum = x F/m Medan Elektromagnetik. Sukiswo
4
Medan Elektromagnetik. Sukiswo
CONDUCTORS Most electrons are stuck to the nucleus But, 1 or 2 electrons per atom are free to move This means that if you apply an external E-field, the free electrons will move Lattice of Nuclei Medan Elektromagnetik. Sukiswo
5
Medan Elektromagnetik. Sukiswo
CONDUCTORS - + conductor electrons Apply external E-field, Force on electrons causes free electrons to move Charge displacement causes response E-field (opposite to applied external E-field) Medan Elektromagnetik. Sukiswo
6
Medan Elektromagnetik. Sukiswo
CONDUCTORS The electrons keep moving until, This means that: , in a conductor Conductor is equipotential Medan Elektromagnetik. Sukiswo
7
Medan Elektromagnetik. Sukiswo
DIELECTRICS electron cloud + + nucleus electron cloud centered on nucleus Cloud shifts to setup Medan Elektromagnetik. Sukiswo
8
Medan Elektromagnetik. Sukiswo
DIELECTRICS Define: dipole moment Polarization partially cancels applied Field Medan Elektromagnetik. Sukiswo
9
is due to bound/dielectric charge and free charge
DIELECTRICS subtracts out bound charge Define: Displacement Flux Density ( C/m2 ) Electric Field (V/m) is due to bound/dielectric charge and free charge is due to bound/dielectric charge only and opposite sign is due to free charge only Medan Elektromagnetik. Sukiswo
10
Medan Elektromagnetik. Sukiswo
FREE CHARGES Examples of free charges: rs on conductor electron beam doped region of semi-conductor Gauss’ Law uses just free charge Most general form Medan Elektromagnetik. Sukiswo
11
Medan Elektromagnetik. Sukiswo
DIELECTRICS Don’t need to know about bound charges to find Many materials have Define , where Typically, Medan Elektromagnetik. Sukiswo
12
Medan Elektromagnetik. Sukiswo
DIELECTRIC BREAKDOWN Example: Arc in Air If E-field is too large, it will pull electrons off from atom These electrons are accelerated by the E-field These accelerated electrons then collide with more atoms that knock off more electrons This is an AVALANCHE PROCESS Damages materials - there is a Voltage limit on components, cables in air : = 30 kV/cm BREAKDOWN OCCURS if Medan Elektromagnetik. Sukiswo
13
Medan Elektromagnetik. Sukiswo
BOUNDARY CONDITIONS - Normal Components all derived from Maxwell’s equations NORMAL COMPONENT Take h << a (a thin disc) a Material 1 TOP h Material 2 BOTTOM Gaussian Surface Medan Elektromagnetik. Sukiswo
14
Medan Elektromagnetik. Sukiswo
BOUNDARY CONDITIONS - Normal Components Case 1: REGION 2 is a CONDUCTOR, D2 = E2 =0 Case 2: REGIONS 1 & 2 are DIELECTRICS with rs = 0 Can only really get rs with conductors Medan Elektromagnetik. Sukiswo
15
Medan Elektromagnetik. Sukiswo
BOUNDARY CONDITIONS - Tangential Components w Material 1 h << w h Material 2 Note: If region 2 is a conductor E1t = 0 Outside conductor E and D are normal to the surface Medan Elektromagnetik. Sukiswo
16
Sukiswo, Medan Elektromagnetik
ELECTROSTATICS - CAPACITANCE Sukiswo, Medan Elektromagnetik
17
Medan Elektromagnetik. Sukiswo
CAPACITANCE of Coaxial Cable a b inner conductor outer conductor In previous class, for coaxial cable: Note: very general result charge on 1 conductor Define: DV between conductors Note that: Medan Elektromagnetik. Sukiswo
18
Medan Elektromagnetik. Sukiswo
Calculation of CAPACITANCE Problems on calculation of C Find Q 1. Method - Assume rs (use symmetry) Find V(rs) 2. Alternate method - Assume V and find Q Medan Elektromagnetik. Sukiswo
19
Medan Elektromagnetik. Sukiswo
CAPACITANCE - parallel plate capacitor Use Gauss’ Law, z=d z=0 C of Parallel Plate capacitor Medan Elektromagnetik. Sukiswo
20
Medan Elektromagnetik. Sukiswo
CAPACITANCE - parallel plate capacitor Parallel Plate Capacitance increase A increase e decrease d This is how electrolytics increase C To get large C Do problem 1a or 2a & 2b Medan Elektromagnetik. Sukiswo
21
Medan Elektromagnetik. Sukiswo
CAPACITANCE - ENERGY METHOD energy stored in capacitors is stored in the E-field Define stored energy: Substitute values of C and V for parallel plate capacitor: Energy Density Volume Medan Elektromagnetik. Sukiswo
22
Medan Elektromagnetik. Sukiswo
CAPACITANCE - ENERGY METHOD In general we can write the total stored energy as: or Medan Elektromagnetik. Sukiswo
23
Medan Elektromagnetik. Sukiswo
CAPACITANCE - ENERGY METHOD Use the Energy Formulation to compute C for the Parallel Plate Capacitor We know that, Compute TOTAL ENERGY: Medan Elektromagnetik. Sukiswo
24
Medan Elektromagnetik. Sukiswo
CAPACITANCE Any 2 conductors have capacitance Example: lines on circuit board Theremin wires and cables Medan Elektromagnetik. Sukiswo
25
Sukiswo, Medan Elektromagnetik
ELECTROSTATICS - Numerical Simulation Sukiswo, Medan Elektromagnetik
26
Medan Elektromagnetik. Sukiswo
Direct Computation of V If we can express entire problem in terms of V then: we can solve directly for V derive all other quantities e.g. E-field, D-field, C and r This approach can be used if conductor defines Outer Boundary can be SYMMETRIC or NON-SYMMETRIC systems Why is this a useful approach?? V is a scalar field - easier to manipulate than E-field We can control V on conductors Can apply numerical methods to solve problem Medan Elektromagnetik. Sukiswo
27
Medan Elektromagnetik. Sukiswo
Use of Laplace and Poisson’s Equations Start with 2 of MAXWELL’s equations: & In rectangular coordinates: Medan Elektromagnetik. Sukiswo
28
Medan Elektromagnetik. Sukiswo
Use of Laplace and Poisson’s Equations Poisson’s equation: Laplace’s equation: (when r = 0) Medan Elektromagnetik. Sukiswo
29
Medan Elektromagnetik. Sukiswo
Numerical Solution: Finite Difference Method Use the FINITE DIFFERENCE Technique for solving problems Solve for approximate V on the Grid - for 2-D Problem Vtop h Vleft Vcenter Vright Vcenter at (x,y) = (0,0) Vbottom h Medan Elektromagnetik. Sukiswo
30
Medan Elektromagnetik. Sukiswo
Numerical Solution: Finite Difference Method At (x,y) = (h/2,0) Vtop Vbottom Vleft Vcenter h Vright At (x,y) = (-h/2,0) Medan Elektromagnetik. Sukiswo
31
Medan Elektromagnetik. Sukiswo
Numerical Solution: Finite Difference Method Now, Can get similar expression for Medan Elektromagnetik. Sukiswo
32
Medan Elektromagnetik. Sukiswo
Numerical Solution: Finite Difference Method Finally we obtain the following expression: Rearrange the equation to solve for Vcenter : Poisson Equation Solver Laplace Equation Solver Medan Elektromagnetik. Sukiswo
33
Medan Elektromagnetik. Sukiswo
Numerical Solution: Example 60V 10V 100V 30V Solution Technique - by Iteration V1 Guess a solution : V=0 everywhere except boundaries V2 V3 V4 V1= V2 = V3 = V4 = 0 Put new values back Start: Medan Elektromagnetik. Sukiswo
34
Medan Elektromagnetik. Sukiswo
Numerical Solution - use of EXCEL Spreadsheet To get an accurate solution, need lots of points - one way is to use a SPREADSHEET In spreadsheet, A1 A1 to A31 set boundary voltage = 0Volts Set these cells to 100 Copy B2 formula to rest of cells A31 Medan Elektromagnetik. Sukiswo
35
Medan Elektromagnetik. Sukiswo
Numerical Solution: Problems 3c. At point P, what is rs ? Get rs from Boundary Conditions: Approximate 3d. Use spreadsheet to add columns: 3e. Use C=Q/V Medan Elektromagnetik. Sukiswo
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.