Download presentation
Presentation is loading. Please wait.
Published byÉlisabeth Gignac Modified over 7 years ago
1
Land-use characterization at continental scales: A methodological framework for GLADA stratification LADA Stratification Task Force - FAO (AGLL, SDRN, AGAL, ESAE, ..) FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS
2
-an integral part of the LADA assessment process
Work Plan - LADA « Stratification » -an integral part of the LADA assessment process global national 8 months 10 months 3 months
3
GLADA « stratification »: Why?
Cost-effective collection and analysis of data selection of representative sites for the evaluation of LD assessment methodologies extrapolation of LD status and recommendations of remedial actions (local >> national >> global) Insights on the causative factors for land-degradation “hot” & “bright” spots observed using GLADA regional-scale assessment methodologies NDVI trends analysis (ISRIC) Rational spatial allocation of remedial measures as a function of local conditions
4
Existing schemes HOLRIDGE Main criteria: climate & vegetation
Source: USGS 0.5 °, 1989 Main criteria: climate & vegetation Limited value for LADA purposes
5
Existing schemes Holdridge (Leemans) Ecoregion (Bailey)
Main criteria: temperature vegetation Limited value for LADA purposes Holdridge (Leemans) Ecoregion (Bailey) World ecosystems (Olson) Biomes (WWF) Ecological Zones (FAO-FORM)
6
‘Regional’ farming system map
Regional study; generalized boundaries Lengthy iterative process: expert knowledge & use of selected biophysical data for guidance Criteria resource base enterprise (land-use) patterns household livelihoods & constraints Farming systems & Poverty- 2001 FAO initiative to improve detail Task Force on subnational land use - SPAT
7
GLADA « stratification »: How ?
Divide an area into regions which have similar characteristics of direct relevance to LADA susceptibility to land degradation inherent biophysical characteristics of the resources base supporting livelihoods land-use purpose and management practices human influences on the resources base socio-economic context major factors influencing the choice of land-use management practices NOTE Regions are tailored to LADA requirements; different from existing “ecological” maps
8
landscape assessment methodologies
1- LD susceptibility Stratify using biophysical characteristics which strongly influence the range of possible land uses. E.g. climate landform/ geology/ soils vegetation access to groundwater ..... Process and simplify existing data in order to highlight inherent susceptibility to LD (natural & human-induced processes) thresholds in the above characteristics which often characterize major differences in land uses (e.g. from previous studies Farming systems; GAEZ, TERRASTAT, ..) REVIEW available data landscape assessment methodologies
9
Length of growing period, LGP
Moisture, Temperature & Heat strongly influence plant growth & development (crop production), Spatially correlated with livestock distribution T (mean)>5deg; P > 0.5 PET <60 days: irrigation necessary Source: IIASA FAO; 0.5° spatial resolution Intervals after TERRASTAT
10
Thermal regime Reclassify
to account for differences in the thermal requirements of crops Reclassify Thermal climates Tropics Subtropics, summer rainfall Subtropics, winter rainfall Tropics: 12m T>18ºC Sub-tropics: >1m 5< T>18º Temperate: >1m T>18º; >4m T <10º Boreal: >1m T<5º; >1 to <4m T>10º Polar Arctic: 12m T <10º Source: IIASA – FAO 0.5° resolution
11
Moisture, Temp., Thermal regime
Class 1 Sub-humid areas SubTropics 2 Moist semi-arid areas 3 Dry semi-arid areas 4 Arid areas 5 Hyper Arid areas 6 Tropics 7 8 9 10 11 Humid areas 12 Perhumid areas 13 14 LGP Thermal climate 0.5° resolution
12
Landform: Slope and relief
strong influences on erosion potential; limits to mechanized agriculture Reclassification Level land Sloping land Source: AGLL, FAO Original scale : 1:5,000,000 (map under review)
13
Landform: Elevation strong correlations to climate, and potential land uses m m > 1500 m Intervals based on regional farming systems classification - after Dixon et al., 2001 Source: SRTM Original resolution 90m
14
Slope, relief, elevation
Slope & elevation Level land, m Level land, m Level land, >1500 m Sloping and steep land, m Sloping and steep land, m Sloping and steep land, >1500 m 5’ resolution
15
Land cover Reclassify GLC2000 into limited number of land-cover classes that strongly influence or reflect major types of land uses Global land cover Forest Regularly flooded Agriculture and mixed agriculture Shrub and Herbaceous & sparse shrub Bare & artificial areas 0.5° resolution
16
Resources base: spatial analysis
Input Data Reclassification Intermediate outputs Final Output LGP IIASA-FAO Thermal climate IIASA-FAO Resources base SRTM DEM (GLCN) Landform Vegetation GLC2000
17
Extracts from regional map
Resources base climate (14) LGP thermal regime landform (6) slope elevation land cover (5) 14 x 6 x 5 = 420 possible classes LADA relevant properties highlighted Each RB unit possibly associated with different land uses NEXT: Differentiate units on the basis of land uses (i.e. sub classification) Are RB strata sufficiently detailed for national LADA purposes?
18
Resources base vs. regional FS
‘Resources base’ units
19
hierarchical classification
Resources Base Generalized small scale map (multiple levels of aggregation possible) visual communication original data retained for subsequent analyses hierarchical classification
20
Processing of data on Land use purpose and practices
Objective: Sub classify ‘Resources Base’ units taking into consideration differences in land uses Land use: Socio-economic purpose(s) of human activities and the land management required to obtain desired goods and services
21
Crop production & management
Spatial reallocation of subnational crop statistics (IFPRI) Reallocation Criteria statistics (AGROMAPS; FAOSTAT) land cover crop suitability ... Reporting units other crops 5690 admin2 subdivisions metric tons per pixel 5’ resolution
22
Crop groups Oil crops Cereals Root crops Sugar crops Pulses
soybean, groundnuts, other oil crops wheat, rice, maize, barley, millet, sorghum potato, cassava sweet potato and yams Sugar crops Pulses sugar cane, sugar beets dry beans, other pulses Variable threshold applied based on data distribution
23
Crop production & management
Major crop groups No significant crops cereals cereals,oil crops cereals,oil crops,pulses cereals,oil crops,pulses,root crops cereals,oil crops,pulses,root crops,stimulant crops cereals,oil crops,pulses,root crops,stimulant crops,sugar crops cereals,oil crops,pulses,root crops,sugar crops cereals,oil crops,pulses,stimulant crops cereals,oil crops,pulses,stimulant crops,sugar crops cereals,oil crops,pulses,sugar crops cereals,oil crops,root crops cereals,oil crops,root crops,stimulant crops cereals,oil crops,root crops,stimulant crops,sugar crops cereals,oil crops,root crops,sugar crops cereals,oil crops,stimulant crops cereals,oil crops,stimulant crops,sugar crops cereals,oil crops,sugar crops cereals,pulses cereals,pulses,root crops cereals,pulses,root crops,stimulant crops cereals,pulses,root crops,stimulant crops,sugar crops cereals,pulses,root crops,sugar crops cereals,pulses,stimulant crops cereals,pulses,stimulant crops,sugar crops cereals,pulses,sugar crops cereals,root crops cereals,root crops,stimulant crops cereals,root crops,stimulant crops,sugar crops cereals,root crops,sugar crops cereals,stimulant crops cereals,stimulant crops,sugar crops cereals,sugar crops oil crops oil crops,pulses oil crops,pulses,root crops oil crops,pulses,root crops,stimulant crops oil crops,pulses,root crops,stimulant crops,sugar crops oil crops,pulses,root crops,sugar crops oil crops,pulses,stimulant crops oil crops,pulses,stimulant crops,sugar crops oil crops,pulses,sugar crops oil crops,root crops oil crops,root crops,stimulant crops oil crops,root crops,stimulant crops,sugar crops oil crops,root crops,sugar crops oil crops,stimulant crops oil crops,stimulant crops,sugar crops oil crops,sugar crops pulses pulses,root crops pulses,root crops,stimulant crops, pulses,root crops,stimulant crops,sugar crops pulses,root crops,sugar crops pulses,stimulant crops pulses,stimulant crops,sugar crops pulses,sugar crops root crops root crops,stimulant crops root crops,stimulant crops,sugar crops root crops,sugar crops stimulant crops stimulant crops,sugar crops sugar crops (work in progress)
24
Major crop groups - TUNISIA
25
Major crop groups - Senegal
26
Number of cattle per pixel
Livestock production Number of cattle per pixel source GLIPHA - FAO 0.5° resolution (~ 55km) Modeling criteria statistics (FAOSTAT) climate ... Other data available: sheep pigs small ruminants
27
Livestock production cattle Calculation:
inputs: livestock systems map, population, cattle number cattle density per livestock systems / population density per livestock system
28
Crop & livestock production zones
Cropland and livestock Cropland Cropland with high livestock presence Cropland with some livestock High livestock presence No cropland and livestock presence Some livestock
29
Resources base & land use
Resources base (thermal climate, LGP, elevation, land cover, landform) land use (crop & livestock production) Further sub classification possible land management (irrigation, protected areas, ..) socio-economic factors (population density, access to land/ markets, ...) actual land uses influenced by many different local factors
30
Crop production & management
Irrigation: a land management factor Area equipped for irrigation (%) source AQUASTAT (2006) 5’ resolution
31
Protected Areas a land management factor regional protected areas
international protected areas national protected areas World Commission on Protected Areas (IUCN-UNEP)
32
Concluding remarks Study in progress; Guided by an Internal Task Force
Potential useful where suitable national stratification schemes for LADA purposes do not already exist Methodological refinements to be based on feedback Feedback: LADA countries & institutions (network) Assessment of validity of GLADA stratification Harmonization with national level data Proposals for improvement of GLADA stratification Participation in methodological development On-going evaluation of a national stratification framework (CSE) involve other institutions (e.g CGIAR – ILRI, IFPRI, CIAT..) participative assessment of GLADA methodologies
33
Concluding remarks Global vs national stratification
Global level approach: multiple simplifications appropriate for continental scale map Potentially significant variations at national level could be masked. Use appropriately detailed data for national stratification and planning of LADA activities However, the stratification framework (methodological approach) remains the same in both cases General agreement between national & global-level strata
34
National stratification Case study - Senegal
Towards a methodological framework National stratification Case study - Senegal Approach and results currently under local evaluation by CSE
35
GLADA « stratification »: How ?
Divide an area into regions which have similar characteristics of direct relevance to LADA biophysical characteristics - inherent biophysical characteristics of the resources base supporting livelihoods land-use purpose and management practices human influences on the resources base socio-economic context major factors influencing the choice of land-use management practices NOTE Regions are tailored to LADA requirements; different from existing “ecological” maps
36
‘Regional’ farming system map
Regional study; generalized boundaries Lengthy iterative process: expert knowledge & use of selected biophysical data for guidance Criteria resource base enterprise (land-use) patterns household livelihoods & constraints Farming systems & Poverty- 2001 FAO initiative to improve detail Task Force on subnational land use - SPAT
37
Caractérisation des zones:
LUT/FS parameters select key data sets for local conditions data availability – a possible constraint
38
Procédure d’intégration spatiale
39
Base des ressources Derived from Land cover, LGP, DEM
40
key distinguishing characteristics of regional farming systems - SSA
41
key distinguishing characteristics of regional farming systems - SSA
42
Arbre de décision Hauts plateaux pérennes O N Mixte maïs Mixte Tempéré des hauts plateaux Systèmes des hauts plateaux Cultures arboricoles industrielles pérennes Présence significative de bovin Maïs Tempéré des hauts plateaux Hauts plateaux >800 m Présence de bétail Départ Dominance maïs Dominance petits grains céréales à Autres hauts plateaux Clairsemé Faible densité de population rurale + Aride Pastoral des cultures > T1 (bétail en grande quantité) ≥ C1 (élevée) Agro-pastoral < C1 (faible) Bétail dominant Riz arbre Axé sur la foret Bétail & cultures Axé sur les arbres d’arbres Riz dominant ≤ T 1 (un peu de bétail) Présence de terres en culture Importance du Présence significative de tubercules de céréales et tubercules Tubercules Céréales & tubercules Autres terres cultivées des tubercules Mixtes tubercules Mixtes céréales & tubercules < T2 (non significative) ≥ T2 (significative) Pastoral (faible intensité) non significative Tubercules-céréales Autres terres cultivées mixtes Mixtes céréales-tubercules Zones marécageuses Terres marécageuses avec un peu de culture du riz Terres marécageuses Axé sur les terres marécageuses Culture dominante riz Systèmes régionaux de production agricole – Afrique sub-saharienne
43
Systèmes de production agricole
validate!
44
Systèmes de production agricole
45
Pourquoi une « stratification »
Zones homogènes d’utilisation des terres Adapté aux besoins en information de LADA Zone D P S I R Niayes Vallée ..... participative multi disciplinary multi stakeholder Planification Répartition rationnelle des mesures de redressement en fonction des conditions locales Évaluation de la dégradation des terres Faciliter un échantillonnage rentable de la collecte/analyse des données Choix de sites ‘représentatifs’ pour l’évaluation des méthodologies Extrapolation des résultats (local >>> national >>> mondial) Pour « expliquer » les origines des variations spatiales de la dégradation des terres observées à différentes échelles (locale >>> nationale >>> mondiale)
46
Concluding remarks Study in progress; Guided by an Internal Task Force
Potential useful where suitable national stratification schemes for LADA purposes do not already exist Methodological refinements to be based on feedback Feedback: LADA countries & institutions (network) Assessment of validity of GLADA stratification Harmonization with national level data Proposals for improvement of GLADA stratification Participation in methodological development On-going evaluation of a national stratification framework (CSE) involve other institutions (e.g CGIAR – ILRI, IFPRI, CIAT..) participative assessment of GLADA methodologies
47
Concluding remarks Global vs national stratification
Global level approach: multiple simplifications appropriate for continental scale map Potentially significant variations at national level could be masked. Use appropriately detailed data for national stratification and planning of LADA activities availability of suitable data?? However, the stratification framework (methodological approach) remains the same in both cases General agreement between national & global-level strata
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.