Presentation is loading. Please wait.

Presentation is loading. Please wait.

Chapter 18 Clutches and Brakes

Similar presentations


Presentation on theme: "Chapter 18 Clutches and Brakes"β€” Presentation transcript:

1 Chapter 18 Clutches and Brakes

2 Equations and Calculation
1. Assume uniform distribution of interface pressure 2. Assume uniform rate of wear at interface 3. Sample Problem: Multiple Disk Wet Clutch 4. Short Shoe Drum Brakes 5. Sample Problem: Two shoe External Drum Brake

3 Assume uniform distribution of interface pressure:
1. Normal Force acting on a differential ring element of radius r: 𝑑𝐹= 2πœ‹π‘Ÿπ‘‘π‘Ÿ 𝑝 𝐹=𝑝 π‘Ÿ 𝑖 π‘Ÿ π‘œ 2πœ‹π‘Ÿπ‘‘π‘Ÿ=πœ‹π‘( π‘Ÿ 0 2 βˆ’ π‘Ÿ 𝑖 2 ) 2. Friction Torque: 𝑑𝑇= 2πœ‹π‘Ÿπ‘‘π‘Ÿ π‘π‘“π‘Ÿ 𝑇= π‘Ÿ 𝑖 π‘Ÿ π‘œ 2πœ‹π‘π‘“ π‘Ÿ 2 π‘‘π‘Ÿ = 2 3 πœ‹π‘π‘“( π‘Ÿ π‘œ 3 βˆ’ π‘Ÿ 𝑖 3 ) 3. N friction interfaces: 𝑇= 2𝐹𝑓( π‘Ÿ 0 3 βˆ’ π‘Ÿ 𝑖 3 ) 3( π‘Ÿ π‘œ 2 βˆ’ π‘Ÿ 𝑖 2 ) 𝑁 𝑇= 2 3 πœ‹π‘π‘“ π‘Ÿ π‘œ 3 βˆ’ π‘Ÿ 𝑖 3 N

4 Assume uniform rate of wear at interface
New Clutch with uniform distribution of interface pressure Question: Where is the greatest initial wear ? Answer: Outer radius Why? Wear Rate ∝ Rate of friction work 𝐹 π‘“π‘Ÿπ‘–π‘π‘‘π‘–π‘œπ‘› 𝑉 π‘Ÿπ‘’π‘π‘π‘–π‘›π‘” 𝑉 π‘Ÿπ‘’π‘π‘π‘–π‘›π‘” ∝ π‘Ÿ π‘π‘™π‘’π‘‘π‘β„Ž π‘“π‘Žπ‘π‘’ After initial wear, the friction lining tends to wear at a uniform rate from a uniform rate of friction work π‘π‘Ÿ=𝐢= 𝑝 π‘šπ‘Žπ‘₯ π‘Ÿ 𝑖 Normal Force: 𝐹= π‘Ÿ 𝑖 π‘Ÿ π‘œ 2πœ‹ 𝑝 π‘šπ‘Žπ‘₯ π‘Ÿ 𝑖 π‘‘π‘Ÿ=2πœ‹ 𝑝 π‘šπ‘Žπ‘₯ π‘Ÿ 𝑖 ( π‘Ÿ π‘œ βˆ’ π‘Ÿ 𝑖 ) Friction Torque: T= π‘Ÿ 𝑖 π‘Ÿ π‘œ 2πœ‹ 𝑝 π‘šπ‘Žπ‘₯ π‘Ÿ 𝑖 π‘“π‘Ÿπ‘‘π‘Ÿπ‘=πœ‹ 𝑝 π‘šπ‘Žπ‘₯ π‘Ÿ 𝑖 𝑓 π‘Ÿ π‘œ 2 βˆ’ π‘Ÿ 𝑖 2 𝑁 𝑇=𝐹𝑓( π‘Ÿ π‘œ + π‘Ÿ 𝑖 2 )

5 Calculated clutch capacity(uniform wear rate) < Calculated clutch capacity (uniform pressure)
βˆ΅π‘†π‘šπ‘Žπ‘™π‘™π‘’π‘Ÿ π‘‘π‘œπ‘Ÿπ‘žπ‘’π‘’ π‘Žπ‘Ÿπ‘š (β„Žπ‘–π‘”β„Žπ‘’π‘Ÿ π‘–π‘›π‘–π‘‘π‘–π‘Žπ‘™ π‘€π‘’π‘Žπ‘Ÿ π‘‘π‘œπ‘€π‘Žπ‘Ÿπ‘‘ π‘‘β„Žπ‘’ π‘œπ‘’π‘‘π‘ π‘–π‘‘π‘’ π‘‘π‘–π‘Žπ‘šπ‘’π‘‘π‘’π‘Ÿ π‘ β„Žπ‘–π‘“π‘‘π‘  π‘‘β„Žπ‘’ π‘π‘’π‘›π‘‘π‘’π‘Ÿ π‘œπ‘“ π‘π‘Ÿπ‘’π‘ π‘ π‘’π‘Ÿπ‘’ π‘‘π‘œπ‘€π‘Žπ‘Ÿπ‘‘ π‘‘β„Žπ‘’ 𝑖𝑛𝑠𝑖𝑑𝑒 A parameter in the design of clutches – the ratio of inside to outside radius 𝑇=πœ‹ 𝑝 π‘šπ‘Žπ‘₯ π‘Ÿ 𝑖 𝑓 π‘Ÿ π‘œ 2 βˆ’ π‘Ÿ 𝑖 2 𝑁 𝑑𝑇 𝑑 π‘Ÿ 𝑖 = πœ‹π‘ π‘šπ‘Žπ‘₯ 𝑓𝑁 π‘Ÿ 0 2 βˆ’3 π‘Ÿ 𝑖 2 =0 (π‘Ÿ 0 2 βˆ’3 π‘Ÿ 𝑖 2 )=0 π‘Ÿ 𝑖 =0.58 π‘Ÿ 0 Usually choose π‘Ÿ 𝑖 =0.45 π‘‘π‘œ 0.8 π‘Ÿ π‘œ

6

7

8 Sample Problem: A multiple disk wet clutch is to be designed for transmitting a torque of 85 Nm. Space restrictions limit the outside disk diameter to 100 mm. Design values for the molded friction material and steel disks to be used are f=0.06 (wet) and 𝑝 π‘šπ‘Žπ‘₯ = 1400π‘˜π‘ƒπ‘Ž. Determine appropriate values for the disk inside diameter, the total number of disks and the clamping force. Outside disk diameter = 100 mm οƒ  Radius = 50mm Select π‘Ÿ 𝑖 =29π‘šπ‘š (2) Use Equation 18.6: 𝑁= 𝑇 πœ‹ 𝑝 π‘šπ‘Žπ‘₯ π‘Ÿ 𝑖 𝑓( π‘Ÿ 0 2 βˆ’ π‘Ÿ 𝑖 2 ) = (πΉπ‘Ÿπ‘–π‘π‘‘π‘–π‘œπ‘› πΌπ‘›π‘‘π‘’π‘Ÿπ‘“π‘Žπ‘π‘’π‘ ) N must be even integer οƒ  N=8 Total number of disks: 9 disks =4+5

9 Clamping Force: 𝑇=𝐹𝑓 π‘Ÿ 0 + π‘Ÿ 𝑖 2 𝑁 85=𝐹 0.06 0.05+0.029 2 8 𝐹=4483𝑁

10 Short-shoe Drum Brakes
1. External shoes that contract to bear against the outer drum surface 2. Internal shoes that expand to contact the inner drum surface Shoe only contacts a small segment of the drum periphery; Force F at the end of the lever applies the brake; Normal force N and friction force fN are distributed continuously over the contacting surface, but assume these force are concentrated at center of contact Figure 18.6 External drum brake with"Short-shoe"

11 Taking moments about pivot A for the shoe and lever assembly:
Fc + fNa - Nb=0 Summation of moments about O for drum: T=fNr Inertial or load torque = friction torque If drum rotate clockwise(counter clockwise), friction force assist (prevent) applied force F to brake, self-energizing(self-deenergizing) T=fFcr/(b+fa) T=fFcr/(b-fa) self-energizing Reverse rotation of drum: T=fFcr/(b+fa) self-deenergizing

12 T=fFcr/(b-fa) self-energizing
π‘β‰€π‘“π‘Ž self-locking Eg: If f=0.3, b<=0.3a. Self-locking requires that shoe be brought in contact with the drum(with F=0) for the drum to be locked against rotation in one direction.

13 Two Shoe External Drum Brake
The two shoe external drum brake shown in Figure 18.7 has shoes 80 mm wide that contact 90 degree of drum surface. For a coefficient of firction of 0.20 and an allowable contact pressure of 400 kN per square meter of projected area, estimate (a) the maximum lever force F that can be used, (b) the resulting braking torque and (c) the radial load imposed on the shaft bearings. Use the derived short shoe equations.

14 - No Vertical Force for component 4
Moments about point 2,5 πΉβˆ—400= 𝐻 45 βˆ—100 - Horizontal Force 𝐻 45 =4𝐹 - No Vertical Force for component 4 𝐻 45 = 𝐻 43 =4𝐹 Summation of moments about 𝑂 13 : 4πΉβˆ— 𝐻 63 βˆ—170βˆ’ 𝐻 63 βˆ—300=0 𝐻 63 =10.53𝐹 𝐻 25 =4𝐹, 𝑉 25 =𝐹 Summation of moments about O 12 : 4𝐹 600 βˆ’πΉ40βˆ’ 𝐻 βˆ’0.2 𝐻 =0 𝐻 62 =7.07𝐹 R=250 L= =170 Assume the drum angular acceleration is zero: Load Torque T: 𝑇= 2.11𝐹+1.41𝐹 βˆ— 𝑅 π‘‘π‘Ÿπ‘’π‘š T = 880F Force applied at fixed pivot O: 𝐻 16 = 𝐻 36 βˆ’ 𝐻 26 =3.46𝐹 𝑉 16 = 𝑉 36 βˆ’ 𝑉 26 =0.70𝐹

15 𝐴= 𝑠𝑖𝑛 45 π‘œ =28284 π‘šπ‘š 2 P=10.53F/28284= F N/mm^2 𝑝 π‘šπ‘Žπ‘₯ =0.40𝑁/ π‘šπ‘š 2 F=0.40 οƒ  F=1074N Brake Torque: T=880F=880(1074) = 945 N m Resultant radial load transmitted to the bearings is: 𝐹=3.53𝐹=3791𝑁


Download ppt "Chapter 18 Clutches and Brakes"

Similar presentations


Ads by Google