Download presentation
Presentation is loading. Please wait.
1
Reverse Time Migration
2
Outline Finding a Rock Splash at Liberty Park
ZO Reverse Time Migration (backwd in time) ZO Reverse Time Migration (forwd in time) ZO Reverse Time Migration Code Examples
3
Liberty Park Lake Rolls of Toilet Paper Time
4
Find Location of Rock Rolls of Toilet Paper Time
5
Find Location of Rock Rolls of Toilet Paper Time
6
Find Location of Rock Rolls of Toilet Paper Time
7
Find Location of Rock Rolls of Toilet Paper Time
8
Find Location of Rock Rolls of Toilet Paper Time
9
Find Location of Rock Rolls of Toilet Paper Time
10
Outline Finding a Rock Splash at Liberty Park
ZO Reverse Time Migration (backwd in time) ZO Reverse Time Migration (forwd in time) ZO Reverse Time Migration Code Examples
11
ZO Modeling 5 1-way time Reverse Order Traces in Time
12
Reverse Time Migration
(Go Backwards in Time) 1-way time -5 T=0 Focuses at Hand Grenades
13
Outline Finding a Rock Splash at Liberty Park
ZO Reverse Time Migration (backwd in time) ZO Reverse Time Migration (forwd in time) ZO Reverse Time Migration Code Examples
14
Reverse Time Migration (Reverse Traces Go Forward in Time)
1-way time -5 T=0 Focuses at Hand Grenades
15
Poststack RTM 1. Reverse Time Order of Traces
5 1-way time -5 1-way time 2. Reversed Traces are Wavelets of loudspeakers
16
Outline Finding a Rock Splash at Liberty Park
ZO Reverse Time Migration (backwd in time) ZO Reverse Time Migration (forwd in time) ZO Reverse Time Migration Code Examples
17
Forward Modeling Reverse Time Modeling
for it=1:1:nt p2 = 2*p1 - p0 + cns.*del2(p1); p2(xs,zs) = p2(xs,zs) + RICKER(it); % Add bodypoint src term p0=p1;p1=p2; end for it=nt:-1:1 p2 = 2*p1 - p0 + cns.*del2(p1); p2(1:nx,2) = p2(1:nx,2) + data(1:nx,it); % Add bodypoint src term p0=p1;p1=p2; end Reverse Time Modeling
18
Recall Forward Modeling d=Lm d(x) = G(x|x’)m(x’)dx’
~ ~ ~ ~ ~ ~ ò d=Lm d(x) = G(x|x’)m(x’)dx’ Fourier d(x,t) = G(x,t-ts|x’,0)m(x’,ts)dx’dts ò = G(x,t|x’,ts)m(x’,ts)dx’dts ò Stationarity x z t src Forward reconstruction of half circles
19
Migration = Adjoint of Data
d=Lm d(x) = G(x|x’)m(x’)dx’ ò m=L d m(x’) = G(x|x’)*d(x)dx ò T Fourier t=0 m(x) = G(x,-t+ts|x’,0)d(x’,ts)dx’dts ò Note: t < ts = G(x, ts|x’,t)d(x’,ts)dx’dts ò Stationarity x z t
20
Migration = Adjoint of Data
d=Lm d(x) = G(x|x’)m(x’)dx’ ò m=L d m(x’) = G(x|x’)*d(x)dx ò T Fourier t=0 m(x) = G(x,-t+ts|x’,0)d(x’,ts)dx’dts ò Note: t < ts = G(x, ts|x’,t)d(x’,ts)dx’dts ò Stationarity x z t
21
Migration = Adjoint of Data
d=Lm d(x) = G(x|x’)m(x’)dx’ ò m=L d m(x’) = G(x|x’)*d(x)dx ò T Fourier t=0 m(x) = G(x,-t+ts|x’,0)d(x’,ts)dx’dts ò Note: t < ts = G(x, ts|x’,t)d(x’,ts)dx’dts ò Stationarity x z t
22
Migration = Adjoint of Data
d=Lm d(x) = G(x|x’)m(x’)dx’ ò m=L d m(x’) = G(x|x’)*d(x)dx ò T Fourier t=0 m(x) = G(x,-t+ts|x’,0)d(x’,ts)dx’dts ò Note: t < ts = G(x, ts|x’,t)d(x’,ts)dx’dts ò Stationarity x z t
23
Migration = Adjoint of Data
d=Lm d(x) = G(x|x’)m(x’)dx’ ò m=L d m(x’) = G(x|x’)*d(x)dx ò T Fourier t=0 m(x) = G(x,-t+ts|x’,0)d(x’,ts)dx’dts ò Note: t < ts = G(x, ts|x’,t)d(x’,ts)dx’dts ò Stationarity x z t Backward reconstruction of half circles
24
Migration = Adjoint of Data
d=Lm d(x) = G(x|x’)m(x’)dx’ ò m=L d m(x’) = G(x|x’)*d(x)dx ò T Fourier t=0 m(x) = G(x,-t+ts|x’,0)d(x’,ts)dx’dts ò Let ts = -ts Note: t < ts Note: t > ts = G(x, ts|x’,t)d(x’,ts)dx’dts ò Stationarity - z x t x z t Backward reconstruction of half circles x z t Backward reconstruction of half circles Forward prop. Of reverse time data
25
m(x’+dx) = d(x) G(x|x’+dx)*
Advantages of m(x’+dx) = d(x) G(x|x’+dx)* x Kirchhoff Mig vs Full Trace Migration Multiples time Multiples Primary 1. Low-Fold Stack vs Superstack 2. Poor Resolution vs Superresolution
26
Outline Finding a Rock Splash at Liberty Park
ZO Reverse Time Migration (backwd in time) ZO Reverse Time Migration (forwd in time) ZO Reverse Time Migration Code Examples
27
Numerical Examples
28
3D Synthetic Data 3D SEG/EAGE Salt Model X Km Z 2.0 Km Y 3.5 Km 4
29
3D Synthetic Data 5 W E Kirchhoff Migration Depth (Km) Redatum + KM
Depth (Km) Redatum + KM 2.0 Offset (km) 3.5 Offset (km) 3.5 5 Cross line 160
30
3D Synthetic Data 6 Kirchhoff Migration W E Redatum + KM Depth (Km)
Redatum + KM Depth (Km) 2.0 Offset (km) Offset (km) 3.5 3.5 6 Cross line 180
31
3D Synthetic Data 7 Kirchhoff Migration W E Redatum + KM Depth (Km)
Redatum + KM Depth (Km) 2.0 Offset (km) Offset (km) 3.5 3.5 7 Cross line 200
32
Prism Synthetic Example
Numerical Examples GOM Data Prism Synthetic Example
33
GOM Kirchhoff ?
34
GOM RTM ?
35
?
36
Prism Synthetic Example
Numerical Examples GOM Data Prism Synthetic Example
37
Prism Wave Migration Courtesy TLE: Farmer et al. (2006)
One Way Migration of Prestack Data RTM of Prestack Data Courtesy TLE: Farmer et al. (2006)
38
Summary 1. RTM much more expensive than Kirchhoff Mig.
2. If V(x,y,z) accurate then all multiples Included so better S/N ration and better Resolution. 3. If V(x,y,z) not accurate then smooth velocity Model seems to work better. Free surface multiples included. 4. RTM worth it for salt models, not layered V(x,y,z). 5. RTM is State of art for GOM and Salt Structures.
39
? ? Solution Claim: Image both Primaries and Multiples Methods: RTM A
40
? ? Piecemeal Methods 2-Way Mirror Wave Migration:
Assume Knowledge of Important Mirror Reverse Time Migration A D ? ?
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.