Presentation is loading. Please wait.

Presentation is loading. Please wait.

Reverse Time Migration

Similar presentations


Presentation on theme: "Reverse Time Migration"— Presentation transcript:

1 Reverse Time Migration

2 Outline Finding a Rock Splash at Liberty Park
ZO Reverse Time Migration (backwd in time) ZO Reverse Time Migration (forwd in time) ZO Reverse Time Migration Code Examples

3 Liberty Park Lake Rolls of Toilet Paper Time

4 Find Location of Rock Rolls of Toilet Paper Time

5 Find Location of Rock Rolls of Toilet Paper Time

6 Find Location of Rock Rolls of Toilet Paper Time

7 Find Location of Rock Rolls of Toilet Paper Time

8 Find Location of Rock Rolls of Toilet Paper Time

9 Find Location of Rock Rolls of Toilet Paper Time

10 Outline Finding a Rock Splash at Liberty Park
ZO Reverse Time Migration (backwd in time) ZO Reverse Time Migration (forwd in time) ZO Reverse Time Migration Code Examples

11 ZO Modeling 5 1-way time Reverse Order Traces in Time

12 Reverse Time Migration
(Go Backwards in Time) 1-way time -5 T=0 Focuses at Hand Grenades

13 Outline Finding a Rock Splash at Liberty Park
ZO Reverse Time Migration (backwd in time) ZO Reverse Time Migration (forwd in time) ZO Reverse Time Migration Code Examples

14 Reverse Time Migration (Reverse Traces Go Forward in Time)
1-way time -5 T=0 Focuses at Hand Grenades

15 Poststack RTM 1. Reverse Time Order of Traces
5 1-way time -5 1-way time 2. Reversed Traces are Wavelets of loudspeakers

16 Outline Finding a Rock Splash at Liberty Park
ZO Reverse Time Migration (backwd in time) ZO Reverse Time Migration (forwd in time) ZO Reverse Time Migration Code Examples

17 Forward Modeling Reverse Time Modeling
for it=1:1:nt p2 = 2*p1 - p0 + cns.*del2(p1); p2(xs,zs) = p2(xs,zs) + RICKER(it); % Add bodypoint src term p0=p1;p1=p2; end for it=nt:-1:1 p2 = 2*p1 - p0 + cns.*del2(p1); p2(1:nx,2) = p2(1:nx,2) + data(1:nx,it); % Add bodypoint src term p0=p1;p1=p2; end Reverse Time Modeling

18 Recall Forward Modeling d=Lm d(x) = G(x|x’)m(x’)dx’
~ ~ ~ ~ ~ ~ ò d=Lm d(x) = G(x|x’)m(x’)dx’ Fourier d(x,t) = G(x,t-ts|x’,0)m(x’,ts)dx’dts ò = G(x,t|x’,ts)m(x’,ts)dx’dts ò Stationarity x z t src Forward reconstruction of half circles

19 Migration = Adjoint of Data
d=Lm d(x) = G(x|x’)m(x’)dx’ ò m=L d m(x’) = G(x|x’)*d(x)dx ò T Fourier t=0 m(x) = G(x,-t+ts|x’,0)d(x’,ts)dx’dts ò Note: t < ts = G(x, ts|x’,t)d(x’,ts)dx’dts ò Stationarity x z t

20 Migration = Adjoint of Data
d=Lm d(x) = G(x|x’)m(x’)dx’ ò m=L d m(x’) = G(x|x’)*d(x)dx ò T Fourier t=0 m(x) = G(x,-t+ts|x’,0)d(x’,ts)dx’dts ò Note: t < ts = G(x, ts|x’,t)d(x’,ts)dx’dts ò Stationarity x z t

21 Migration = Adjoint of Data
d=Lm d(x) = G(x|x’)m(x’)dx’ ò m=L d m(x’) = G(x|x’)*d(x)dx ò T Fourier t=0 m(x) = G(x,-t+ts|x’,0)d(x’,ts)dx’dts ò Note: t < ts = G(x, ts|x’,t)d(x’,ts)dx’dts ò Stationarity x z t

22 Migration = Adjoint of Data
d=Lm d(x) = G(x|x’)m(x’)dx’ ò m=L d m(x’) = G(x|x’)*d(x)dx ò T Fourier t=0 m(x) = G(x,-t+ts|x’,0)d(x’,ts)dx’dts ò Note: t < ts = G(x, ts|x’,t)d(x’,ts)dx’dts ò Stationarity x z t

23 Migration = Adjoint of Data
d=Lm d(x) = G(x|x’)m(x’)dx’ ò m=L d m(x’) = G(x|x’)*d(x)dx ò T Fourier t=0 m(x) = G(x,-t+ts|x’,0)d(x’,ts)dx’dts ò Note: t < ts = G(x, ts|x’,t)d(x’,ts)dx’dts ò Stationarity x z t Backward reconstruction of half circles

24 Migration = Adjoint of Data
d=Lm d(x) = G(x|x’)m(x’)dx’ ò m=L d m(x’) = G(x|x’)*d(x)dx ò T Fourier t=0 m(x) = G(x,-t+ts|x’,0)d(x’,ts)dx’dts ò Let ts = -ts Note: t < ts Note: t > ts = G(x, ts|x’,t)d(x’,ts)dx’dts ò Stationarity - z x t x z t Backward reconstruction of half circles x z t Backward reconstruction of half circles Forward prop. Of reverse time data

25 m(x’+dx) = d(x) G(x|x’+dx)*
Advantages of m(x’+dx) = d(x) G(x|x’+dx)* x Kirchhoff Mig vs Full Trace Migration Multiples time Multiples Primary 1. Low-Fold Stack vs Superstack 2. Poor Resolution vs Superresolution

26 Outline Finding a Rock Splash at Liberty Park
ZO Reverse Time Migration (backwd in time) ZO Reverse Time Migration (forwd in time) ZO Reverse Time Migration Code Examples

27 Numerical Examples

28 3D Synthetic Data 3D SEG/EAGE Salt Model X Km Z 2.0 Km Y 3.5 Km 4

29 3D Synthetic Data 5 W E Kirchhoff Migration Depth (Km) Redatum + KM
Depth (Km) Redatum + KM 2.0 Offset (km) 3.5 Offset (km) 3.5 5 Cross line 160

30 3D Synthetic Data 6 Kirchhoff Migration W E Redatum + KM Depth (Km)
Redatum + KM Depth (Km) 2.0 Offset (km) Offset (km) 3.5 3.5 6 Cross line 180

31 3D Synthetic Data 7 Kirchhoff Migration W E Redatum + KM Depth (Km)
Redatum + KM Depth (Km) 2.0 Offset (km) Offset (km) 3.5 3.5 7 Cross line 200

32 Prism Synthetic Example
Numerical Examples GOM Data Prism Synthetic Example

33 GOM Kirchhoff ?

34 GOM RTM ?

35 ?

36 Prism Synthetic Example
Numerical Examples GOM Data Prism Synthetic Example

37 Prism Wave Migration Courtesy TLE: Farmer et al. (2006)
One Way Migration of Prestack Data RTM of Prestack Data Courtesy TLE: Farmer et al. (2006)

38 Summary 1. RTM much more expensive than Kirchhoff Mig.
2. If V(x,y,z) accurate then all multiples Included so better S/N ration and better Resolution. 3. If V(x,y,z) not accurate then smooth velocity Model seems to work better. Free surface multiples included. 4. RTM worth it for salt models, not layered V(x,y,z). 5. RTM is State of art for GOM and Salt Structures.

39 ? ? Solution Claim: Image both Primaries and Multiples Methods: RTM A

40 ? ? Piecemeal Methods 2-Way Mirror Wave Migration:
Assume Knowledge of Important Mirror Reverse Time Migration A D ? ?


Download ppt "Reverse Time Migration"

Similar presentations


Ads by Google