Download presentation
Presentation is loading. Please wait.
Published byKevin Golden Modified over 7 years ago
1
II.3 Mental Reality II.3.2 (M Sept 25) The Euler Space
2
The Euler Space De harmoniae veris principiis per speculum musicum
repraesentatis (1773) p.350 Tentamen novae theoriae musicae ex certissismis harmoniae principiis dilucide expositae (1739)
3
frequency for middle c f = f0.2o.3q.5t o, q, t integers, i.e. numbers ...-2,-1,0,1,2,... pitch(f) ~ log(f) = log(f0) + o.log(2) + q.log(3) +t.log(5) ~ o.log(2) + q.log(3) +t.log(5) o, q, t are unique for each f prime number factorization! log(5) log(3) log(2)
4
log(5) Euler space log(3) log(2)
5
pitch classes in just tuning
6
Gioseffo Zarlino (1517 - 1590): major and minor
pitch classes in just tuning 180o Gioseffo Zarlino ( ): major and minor
7
third (or syntonic) comma
8
Big Problem!!! 440 Hz ⇒ 434.567 Hz 440 Hz ⇒ 446.003 Hz
calculating and hearing commata third comma, syntonic comma 1 third (+2 octaves) – 4 fifths ~ 5/4 × (2/1)2 × (3/2)-4 = —21.51 Ct / = 440 Hz ⇒ Hz fifth comma, Pythagorean comma 12 fifths – 7 octaves ~ (3/2)12 × (2/1)-7 = Ct 223.46/1200 = Big Problem!!! 440 Hz ⇒ Hz
9
Solution (i/12).log(2), i integer (3/12).log(2)
f = f0.2o.3q.5t pitch(f) = log(f0) + o.log(2) + q.log(3) +t.log(5) also admit fractional exponents o, q, t = r/s, e.g. 6/5, -2/3 Solution (3/12).log(2) fractions also ok for independence of directions! (i/12).log(2), i integer
11
pitch classes in 12-tempered tuning
6 1 2 3 4 5 7 8 9 10 11 c g
12
0 <—> 2 3 <—> 5 4 <—> 10 7 <—> 1 8 <—> 6
consonances <—> dissonances! 7 8 4 3 9 6 1 2 3 4 5 7 8 9 10 11 0 <—> 2 3 <—> 5 4 <—> 10 7 <—> 1 8 <—> 6 9 <—> 11 d = 5 ⨉ c + 2
13
pitch classes in 12-tempered tuning
6 1 2 3 4 5 7 8 9 10 11 c g d = 5 x k +2 unique formula that exchanges consonances and dissonances of counterpoint!
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.