Download presentation
Presentation is loading. Please wait.
1
Thermal Dileptons from High to Low Energies
2/5/2018 Ralf Rapp Cyclotron Institute + Dept of Phys & Astro Texas A&M University College Station, USA ISF Research Workshop on Study of High-Density Matter with Hadron Beams Weizmann Institute (Rehovot, Israel),
2
1.) Intro: EM Spectral Function to Probe Fireball
Thermal Dilepton Rate Im Πem(M,q;mB,T) e+e- → hadrons r Im Pem(M) / M2 Hadronic Resonances - change in degrees of freedom - restoration of chiral symmetry Continuum - temperature Low-q0,q limit: transport coefficient (EM conductivity) Total yields: fireball lifetime e+ e- e e- M [GeV]
3
1.2 30 Years of Dileptons in Heavy-Ion Collisions
<Nch>=120 Robust understanding across QCD phase diagram: QGP + hadronic radiation with melting r resonance
4
Outline 1.) Introduction 2.) Degrees of Freedom of the Medium
2/5/2018 Outline 1.) Introduction 2.) Degrees of Freedom of the Medium Quark-to-Hadron Transition 3.) Chiral Symmetry Restoration QCD +Weinberg Sum Rules Other Multiplets 4.) Phenomenological Tool Fireball Temperature Fireball Lifetime (pA?) 5.) Conclusions
5
2.1 In-Medium r-Meson Spectral Functions
Dr (M,q;mB,T) = 1 / [M2 – (mr(0))2 - Srpp - SrB - SrM ] Hot + Dense Matter [RR+Gale ’99] Hot Meson Gas rB/r0 0.1 0.7 2.6 mB =330MeV [RR+Wambach ’99] r-meson “melts” in hot/dense matter baryon density rB more important than temperature
6
2.2 Dilepton Rates and Degrees of Freedom dRee /dM2 ~ ∫d3q/q0 f B(q0;T) Im Pem /M2
r-meson resonance “melts” spectral function merges into QGP description Direct evidence for transition hadrons → quarks + gluons - [qq→ee] [HTL] [Ding et al ’10] dRee/d4q 1.4Tc (quenched) q=0 [RR,Wambach et al ’99]
7
Outline 1.) Introduction 2.) Degrees of Freedom of the Medium
2/5/2018 Outline 1.) Introduction 2.) Degrees of Freedom of the Medium Quark-to-Hadron Transition 3.) Chiral Symmetry Restoration QCD +Weinberg Sum Rules Other Multiplets 4.) Phenomenological Tool Fireball Temperature Fireball Lifetime (pA?) 5.) Conclusions
8
3.1 QCD + Weinberg Sum Rules
[Hatsuda+Lee’91, Asakawa+Ko ’93, Leupold et al ’98, …] r a1 Dr = rV -rA [Weinberg ’67, Das et al ’67; Kapusta+Shuryak ‘94] accurately satisfied in vacuum In Medium: condensates from hadron resonance gas, constrained by lattice-QCD T [GeV]
9
3.1.2 QCD + Weinberg Sum Rules in Medium
→ Search for solution for axial-vector spectral function [Hohler +RR ‘13] quantitatively compatible with (approach to) chiral restoration strong constraints by combining SRs Chiral mass splitting “burns off”, resonances melt
10
3.2 Lattice-QCD Results for N(940)-N*(1535)
Euclidean Correlator Ratios Exponential Mass Extraction “Nucleon” “N*(1535)” R = ∫(G+-G-)/(G++G-) [Aarts et al ‘15] also indicates MN*(T) → MN (T) ≈ MNvac
11
Outline 1.) Introduction 2.) Degrees of Freedom of the Medium
2/5/2018 Outline 1.) Introduction 2.) Degrees of Freedom of the Medium Quark-to-Hadron Transition 3.) Chiral Symmetry Restoration QCD +Weinberg Sum Rules Other Multiplets 4.) Phenomenological Tool: Excitation Functions Fireball Temperature Fireball Lifetime (pA?) 5.) Conclusions
12
4.1 NA60 Dimuons at SPS (√s=17.3 GeV)
Integrate rates over thermal fireball: Radiation Spectrum e+ e- r Low mass: r-meson melting, fireball lifetime High mass: QGP thermometer Tavg ~ 200 MeV q q -
13
4.2 Fireball Temperature Slope of Intermediate-Mass Excess Dileptons
unique ``early” temperature measurement (no blue-shift!) Ts approaches Ti toward lower energies first-order “plateau” at BES-II/CBM/NICA?
14
4.3 Fireball Lifetime Excitation Function of Low-Mass Dilepton Excess Yield 1000 [RR+van Hees ‘14] [STAR ‘15] Low-mass excess tracks lifetime well (medium effects!) Tool for critical point search?
15
4.4 Dileptons at HADES: Coarse Graining
Coarse-graining of hadronic transport to → extract thermodynamic variables → convolute with thermal dilepton rate Temperature + Baryon Density Dilepton Yield vs. Nucleon Flow [Huovinen et al. ’02, Endres et al ’15, Galatyuk et al ‘16] Au-Au (1.23AGeV) build-up of collectivity EM radiation “thermal” fireball fireball lifetime “only” tfb ~ 13 fm/c
16
4.4.2 Dileptons at HADES: Spectra + Lifetimes
Coarse-Graining Results with in-Medium Spectral Functions Fair consistency with mass spectra and lifetime systematics
17
4.5 Lifetime from Dileptons vs. HBT Radii
Rlong qualitatively consistent, quantitatively much smaller
18
5.) Conclusions Explicit evidence for parton-hadron transition: r melting Progress in understanding mechanisms of chiral restoration - evaporation of chiral mass r-a1 splitting (sum rules, MYM) Dilepton radiation as a precision tool to measure - fireball lifetime (low mass), including pA - early temperature (intermediate mass; no blue-shift) Coarse-graining enables to extend thermal-radiation tool to lower energies
19
5.3 Low-Mass Dileptons in p-Pb (5.02GeV)
Thermal radiation at ~10% of cocktail follows excess-lifetime systematics
20
Outline 1.) Introduction 2.) Degrees of Freedom of the Medium
2/5/2018 Outline 1.) Introduction 2.) Degrees of Freedom of the Medium Quark-to-Hadron Transition 3.) Chiral Symmery Restoration QCD +Weinberg Sum Rules Other Multiplets 4.) Transport Properties Electric Conductivity 5.) Phenomenological Tool Fireball Lifetime + Temperature (Excitation Fct.) Fireball in pA? 6.) Conclusions
21
4.1 Nuclear Photoproduction: r Meson in Cold Matter
g + A → e+e- X extracted “in-med” r-width Gr ≈ 220 MeV e+ e- Eg≈1.5-3 GeV g r [CLAS+GiBUU ‘08] Microscopic Approach: Fe - Ti g N r product. amplitude in-med. r spectral fct. + M [GeV] [Riek et al ’08, ‘10] full calculation fix density 0.4r0 r-broadening reduced at high 3-momentum; need low momentum cut!
22
2.1 In-Medium Vector Mesons at RHIC + LHC
Anti-/baryon effects melt the r meson w also melts, f more robust ↔ OZI
23
4.3 Comparison to Data: RHIC
Ideal Hydro Viscous Hydro [van Hees et al, ‘11, ’14] [Paquet et al ’16] same rates + intial flow similar results from various evolution models
24
3.2 Massive Yang-Mills in Hot Pion Gas
Temperature progression of vector + axialvector spectral functions supports “burning” of chiral-mass splitting as mechanism for chiral restoration [as found in sum rule analysis]
25
4.1 Initial Flow + Thermal Photon-v2
Bulk-Flow Evolution Direct-Photon v2 Ideal Hydro 0-20% Au-Au initial radial flow: - accelerates bulk v2 - harder radiation spectra (pheno.: coalescence, multi-strange f.o.) much enhances thermal-photon v2 [He et al ’14]
26
[Holt,Hohler+RR in prep]
4.2 Thermal Photon Rates Hadronic emission rate close to QGP-AMY semi-QGP much more suppressed [Pisarski et al ‘14] ``Cocktail” of hadronic sources (available in parameterized form) Sizable new hadronic sources: pr → gw , pw → gr , rw → gp [Heffernan et al ‘15] [Holt,Hohler+RR in prep]
27
3.2 Massive Yang-Mills Approach in Vaccum
Gauge r + a1 into chiral pion lagrangian: problems with vacuum phenomenology → global gauge? Recent progress: - full r propagator in a1 selfenergy - vertex corrections to preserve PCAC: [Urban et al ‘02, Rischke et al ‘10] [Hohler +RR ‘14] enables fit to t-decay data! local-gauge approach viable starting point for addressing chiral restoration in medium
28
4.3.2 Photon Puzzle!? Tslopeexcess ~240 MeV
blue-shift: Tslope ~ T √(1+b)/(1-b) T ~ 240/1.4 ~ 170 MeV
29
2.2 Transverse-Momentum Dependence
pT -Sliced Mass Spectra mT -Slopes x 100 spectral shape as function of pair-pT entangled with transverse flow (barometer)
30
4.1.2 Sensitivity to Spectral Function
In-Medium r-Meson Width Mmm [GeV] avg. Gr (T~150MeV) ~ 370 MeV Gr (T~Tc) ≈ 600 MeV → mr driven by (anti-) baryons
31
4.2 Low-Mass Dileptons: Chronometer
In-In Nch>30 first “explicit” measurement of interacting-fireball lifetime: tFB ≈ (7±1) fm/c
32
4.1 Prospects I: Spectral Shape at mB ~ 0
STAR Excess Dileptons [STAR ‘14] rather different spectral shapes compatible with data QGP contribution?
33
4.5 QGP Barometer: Blue Shift vs. Temperature
SPS RHIC QGP-flow driven increase of Teff ~ T + M (bflow)2 at RHIC high pt: high T wins over high-flow r’s → minimum (opposite to SPS!) saturates at “true” early temperature T0 (no flow)
34
2.3 Low-Mass e+e- Excitation Function: 20-200 GeV
P. Huck et al. [STAR], QM14 compatible with predictions from melting r meson “universal” source around Tpc
35
3.3.2 Effective Slopes of Thermal Photons
Thermal Fireball Viscous Hydro [van Hees,Gale+RR ’11] [S.Chen et al ‘13] thermal slope can only arise from T ≤ Tc (constrained by closely confirmed by hydro hadron data) exotic mechanisms: glasma BE? Magnetic fields+ UA(1)? [Liao at al ’12, Skokov et al ’12, F. Liu ’13,…]
36
3.1.2 Transverse-Momentum Spectra: Baro-meter
Effective Slope Parameters SPS RHIC QGP HG [Deng,Wang, Xu+Zhuang ‘11] qualitative change from SPS to RHIC: flowing QGP true temperature “shines” at large mT
37
2.2 Chiral Condensate + r-Meson Broadening
qq / qq0 effective hadronic theory h = mq h|qq|h > 0 contains quark core + pion cloud = Shcore + Shcloud ~ matches spectral medium effects: resonances + pion cloud resonances + chiral mixing drive r-SF toward chiral restoration Sp > - r
38
5.2 Chiral Restoration Window at LHC
low-mass spectral shape in chiral restoration window: ~60% of thermal low-mass yield in “chiral transition region” (T= MeV) enrich with (low-) pt cuts
39
4.4 Elliptic Flow of Dileptons at RHIC
maximum structure due to late r decays [He et al ‘12] [Chatterjee et al ‘07, Zhuang et al ‘09]
40
4.) Electric Conductivity
Similar behavior for different transport? h/s ~ (2pT) DsHF ~ sEM/T Probes soft limit of EM spectral function sEM(T) = - e2 limq0→0 [ ∂/∂q0 Im PEM(q0,q=0;T) ] Need density-squared contributions Non-trivial for vertex corrections (usually evaluated with vacuum propagators) Start out with pion gas: dress pions in r-cloud + vertex corrections [Atchison+RR in prog.]
41
4.2 Low-Energy Limit of Spectral Function
Pion Gas Perturbative QGP T=150MeV ar = 0.7 ar = 1.2 ar = 2.7 q0 [MeV] [Moore+Robert ‘06] conductivity peak strongly smeared out suggestive for strongly coupled system
42
4.3 Conductivity: Comparison to other Approaches
in-med. p gas → [Greif et al ‘16] in-medium pion gas well above SYM limit interactions with anti-/baryons likely to reduce it
43
3.3.2 Fireball vs. Viscous Hydro Evolution
[van Hees, Gale+RR ’11] [S.Chen et al ‘13] very similar!
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.