Download presentation
Presentation is loading. Please wait.
1
USM Photometric Redshifts for Astro-wise
R. Bender, A. Gabasch, M. Neeser, R. Saglia, J. Snigula Universitätssternwarte München Ludwig-Maximillians-Universität 18/11/2003 Groningen Workshop (M. Neeser)
2
Groningen Workshop (M. Neeser)
Introduction Photometric Redshifts: deducing redshifts from multiple-band optical and near infrared imaging (poor man´s spectroscopy) Scientific drivers: Source identifications and redshifts Luminosity functions Star formation histories Large scale structures Cluster searches An obvious scientific product for the database catalogues 18/11/2003 Groningen Workshop (M. Neeser)
3
Spectral Energy Distributions (model input)
Galaxies Stars 20 SED´s 18/11/2003 Groningen Workshop (M. Neeser)
4
Groningen Workshop (M. Neeser)
Method: Filter curves convolved with detectors Observed flux for each source SEDs: convolved with filters stepped in redshift 18/11/2003 Groningen Workshop (M. Neeser)
5
Assigning a redshift and SED to each source
18/11/2003 Groningen Workshop (M. Neeser)
6
Groningen Workshop (M. Neeser)
Final SED/redshift fit FDF 2893 18/11/2003 Groningen Workshop (M. Neeser)
7
Groningen Workshop (M. Neeser)
FDF 2367 18/11/2003 Groningen Workshop (M. Neeser)
8
Groningen Workshop (M. Neeser)
FDF 914 18/11/2003 Groningen Workshop (M. Neeser)
9
Groningen Workshop (M. Neeser)
Comparison with zspec 200 FDF spectra 18/11/2003 Groningen Workshop (M. Neeser)
10
Limitations of this method
Requires adequate spectral coverage (ie. at least 4 filters) Existence of degeneracies in SEDs at some redshifts SED input library inadequate to accurately map the coolest stars Id´s and redshifts for AGN‘s must be done separately from galaxies 18/11/2003 Groningen Workshop (M. Neeser)
11
Groningen Workshop (M. Neeser)
FDF 4940 18/11/2003 Groningen Workshop (M. Neeser)
12
Groningen Workshop (M. Neeser)
FDF 2497 18/11/2003 Groningen Workshop (M. Neeser)
13
Integration into Astro-Wise Pipeline
Envision two modes of operation: automatic redshifts and source identification from catalogue colours assuming given default settings (filters, SED´s) and with output: zphot, SED, probability, and errors. interactive mode with user defined parameters (SED´s, zrange, Mrange ) with simple plotting facilities and filter convolution routines. 18/11/2003 Groningen Workshop (M. Neeser)
14
Integration into Astro-Wise Pipeline
Class Photred Persistent class PhotredConfig() persistent SED models “ model errors “ filter convolution “ seeing factors “ filter weight (SED error in given filter / bad filter value) ==> each object assigned: z1, z2, MB (persistent) Dz1, Dz2 P1, P2 C1, C2 model1, model2 18/11/2003 Groningen Workshop (M. Neeser)
15
Integration into Astro-Wise Pipeline
Open crucial issues: 1/ class definitions 2/ reliable, consistent photometric redshifts can only be achieved with photometric and PSF uniformity across filter sets. (ie. PSF homogenization across all filters). 18/11/2003 Groningen Workshop (M. Neeser)
16
Present Implementation of Photometric Redshift Routine
fortran routines to compute chi-square minimization and redshift probability function super mongo routines to display output, with a large number of user defined parameters Munics interactive source selection 18/11/2003 Groningen Workshop (M. Neeser)
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.