Download presentation
Presentation is loading. Please wait.
Published byLinda Patrick Modified over 7 years ago
1
Groundwater Recharge and Water Management in Israel
Adi Tal Israel Hydrological Service Water authority Ministry of National Infrastructures, Energy and Water International seminar in groundwater recharge July 14th 2017, Santiago, Chile
2
Precipitation and main natural water resources
Rain precipitation map (mm/year) Main water resources Precipitation (mm) Tel Aviv Mediterranean sea Rainy season between October to April Mediterranean sea N
3
Main Water Supply System (1964)
Haifa Saphir station Eshkol reservoir Sea of Galilee (Kinneret) National carrier 108” Tel Aviv Jerusalem The carrier diverted the water directly to the consumption areas. During the rainy season also for groundwater recharge into the coastal aquifer National carrier - length section National carrier - length section -200 +200 108” Sea of Galilee
4
Abandoned sandstone quarry
1970s: Time when most groundwater recharge projects were developed Purpose of recharge Provide storage for the sea of Galili water Raise groundwater level in the coastal aquifer Abandoned sandstone quarry Recharge facilities Water Volumes Recharge (mcm/year) Number of Wells/sites Water source Recharge type 50 100 Sea of Galili Injection wells 30 5 Recharge basins
5
Available water in the Sea of Galili (mcm)
Decrease in available water in the Sea of Galili This source could no longer provide water for recharge. since 1994, the recharge of Sea of Galili water was almost stopped.
6
Recharge from Rainfall AVERGE: 1,336 MCM , MEDIAN: 1202, STD: 456 MCM
along years: AVERGE: 1,336 MCM , MEDIAN: 1202, STD: 456 MCM Min. : 710 MCM Max. : 2,929 MCM MCM
7
Natural water storage above permitted level (mcm)
2000 1750 1500 1250 1000 MCM 750 500 250 -250 -500 1974 1976 1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 Decrease in the storage of the natural water below its permitted level
8
Sea Water Desalination
The reduction in rainfall led to the development of desalination plants Production 2009 (127mcm) Hadera Desalinated water is an important water resource in Israel. Production 2013 (150mcm) Sorek Production 2007 (90) In the last 4 years, the recharge from rain has been the lowest measured. Palmachim Production 2015 (100) Ashdod (120mcm) Ashkelon Production 2005 Overall until 2015 = 600 MCM/Y Until 2020 = 750 MCM/Y
9
Israel Water Resource Development 1958 - 2014
Total Water Supplied Natural water Effluent Desalinated Average natural water recharge Israel Water Resource Development Until 1988 the natural water were the only water resource. By developing a new water resource we succeeded to decrease the natural water supply to its sustainable value.
10
The Israeli experience in groundwater recharge
Water table Area (kmr) Width (km) Storage (mcm) Depth to water table (m) thickness (m) Porosity Hydraulic conductivity (m/day) 1800 13 500 10 -50 0.1 – 0.2 10 -20 The Coastal aquifer is built of calcareous sandstone and sand with intermediate clay layers The Coastal Aquifer is an excellent area for recharge basins
11
Groundwater recharge types
The Israeli experience in groundwater recharge Groundwater recharge types Effluent - Soil Aquifer Treatment + Store Storm runoff recharge Spreading basins in abandoned sandstone quarries Injection Wells
12
Reuse of all sewage effluents in Dan Region (Greater Tel Aviv)
Wastewater Treatment plant (Shafdan) and the pipeline to Negev של חברת מקורות בישראל ה ג ל י ל 7 מליון קוב ברכת רם בניאס יוסיפון מאגר כפר גלעדי קרית שמונה רמת הגולן מאגר עינן תחנת 2.5 מיליון קוב מאגר דלתון פינה ראש צפת נהריה ספיר מאגר דמון תחנת כורסי עכו שפרעם קריות כרמיאל ברכות שפרעם תחנת צלמון טבריה גולני נצרת 140+ מאגר אשכול חיפה כ נ ר ת עפולה תחנת האון מיצר מים לירדן בר' בית זרע סכר דגניה תחנת דגניה בית שאן בר' ידעיה תח' שמשית הרי אפרים מנהרת מנשה מאגר תשלובת הקישון 12 מלמ"ק אורן חדרה כפר ברור מחולה תחנת חוף הכרמל תעלת המים הפתוחה האחזיות שומרון שומרון קולחי נתניה תחנת ראש העין תחנת נוה ירק האחזויות שומרון מחנה חורון צומת תפוח שילה אריאל בקעתהירדן מעלה אפרים תל אביב יפו תחנת ויסות T.T.A ראשל"צ מפעל השפד"ן פ"ת חולון בת ים תחנת טל תח' דניאל תח' אחיסמך תח' לטרון מאגר איילון בר' פדיה ירושלים תח' חולדה תח' כ.אוריה תח' שואבה תח' הלר תח' דוד תח' כסלון גוש עציון תח' גבעות תח' עגור 7 קרית גת קו שלישי לנגב "70 מים מושבים בית לחם קליה מצפה שלם קרית ארבע חברון אשקלון י ם ה מ ל ח קו ירקון מערבי מאגר נהורה בר ספיח בר' אחוזים אמציה גל און בר' מחצבה צומת זוהר בר' נגה תח' שמחה מאגר מפסח בר' תקומה א' ב' באר שבע דימונה ירוחם ה נ ג ב לוציפר בר' ותח' שוקת בר' תפוח בר' ותח' יעלים ערד בר' ערד חמי זוהר מי שתיה למלונות ים המלח תח' נבטים מאגר לב הנגב בר ערעור תח' אברהם בר' מבטחים בר' צאלים מאגר צאלים בר' באר שבע קד' ניצנה (מליחים) קד' למים מליחים תח' חלוצה בר' ותח' רביבים משאבי שדה תח' סדום קד' אפעה קד' מכתש קטן למים מליחים נאות הכיכר בר' שבטה שדה בוקר בר' שדה בוקר בר' אורון עידן עין יהב צופר מצפה רמון הר חריף פארן קד' פארן בר' תח' פארן בר' ציחור בר' סיירים בר' צוקי עובדה יטבתה תח' נחושתן סבחה מתקן התפלת מים מליחים לאילת מים מליחים ערבה גרופית קטורה מפעל נחלי מנשה לתפיסת מי שטפונות והחדרתם למי תהום תח' אלמוג בר' ותח' גרנות באר אורה מערכת המים הארצית מפת מפעלי המים מקרא המוביל הארצי קו מים לשתיה מים להשקייה - קולחין ישובים מאגר מים שפירים בריכות מים שפירים תחנת שאיבה מים שפירים תחנת מים מושבים מאגר מים מושבים בריכות מים מושבים מתקן התפלה קדוחי מים מליחים אילת קו ירקון מזרחי נתניה בר' שיזפון יהל בר' ותח' שיטה מפעל זמר תח' מאגר נשר Sewage from the Greater Tel Aviv area – 125 MCM/Y Large-scale WWTP – secondary treatment quality Six infiltration fields (soil aquifer treatment + store) Over 150 production and monitoring wells (quality permitted for “occasional” drinking) 90 KM pipeline to Negev 32 pumping stations, operational storages (0.51MCM) and seasonal storages (17.2 MCM) National Water Greed 12
13
Effluent recharge Scheme of the SAT treatment The unsaturated zone acts as a huge filter that performs physical, chemical and biological treatment
14
Effluent recharge General map of the recharge area Fresh water wells
15
Yearly recharge and recovery of effluents
Effluent recharge Yearly recharge and recovery of effluents
16
Effluent recharge Effluent expansion map calculated according to concentrations of chloride and carbamazepine (CBZ) Generic drug
17
Numerical model prediction for effluents expansion
Effluent recharge Numerical model prediction for effluents expansion
18
Effluent recharge
19
Effluent recharge
20
Effluent recharge Decrease in Infiltration rate as a result of accumulation of organic material on land cover.
21
Effluent recharge
22
Effluent recharge Cultivation and ventilation of the infiltration field between the floods
23
Effluent recharge
24
Effluent recharge With proper operation and maintenance, the SAT system should be considered extremely attractive for effluent reclamation and storage.
25
storm runoff recharge in Menashe basin
Taninim Dam. dam Water channel Dam Recharge Basin Detention reservoir 1 km Recharge basin located in a dune area above the coastal aquifer. infiltration Basin The water arrived to detention reservoir for 2-3 days, until the Turbidity decreased below 50 NTU
26
Storm runoff recharge in Menashe basin
Recharge Basin Calcareous sandstone Calcareous sandstone sand Sand silt Clay 4 Geological section of the coastal aquifer Terrestrial Clay 8 Distance (km) Level (m) 40 -80 -140
27
Storm runoff recharge in Menashe basin
Sampling stations for water quality Sampling stations Organic Inorganic Pesticides High Simazine: Pesticides used in agriculture in this area First storm is highly contaminated as a result of the accumulation of contaminants in the area during the dry season
28
Menashe storm runoff recharge
Data available in real time on the computer screen Telemetric system Monitoring level device Observation well +8 -4 +4 1/10/2014 19/6/2017 Water level Level (m) PVC 2” 0.3 mm The small increase in water level indicates the low amount of recharge due to low rainfall
29
storm runoff recharge in Menashe basin
Water channel Technical details 670,000 m2 (3 mcm) Detention basin area 530,000 m2 Infiltration basin area 30,000 m3/hour Maximum flow in water channel 13 mcm/year Average recharge 30 mcm/year Maximum recharge 15 m Average depth to water table 25 mcm Storage 3500 m3/hour Production capacity 1.2 m/day Initial Infiltration rate 0.3 m/day Infiltration rate, end of rainy season 30 20 10 100 1500 Level (m) Distance (m) October 1994 April 1995 After rainy season, water must be pumped to prepare storage volume for the next rainy season Infiltration rate decreased as result of crust cover on the surface. Usually the crust brakes naturally during the dry season. After a very rainy season water level gets close to the ground
30
Grumusol and Rendezine soil cover
Storm runoff recharge in Shiqma basin Floodwater usually contains very high sediment load, 20,000 ppm. The water detained in the diversion reservoir, until the sediment load decreases to 50 NTU, usually after 3-5 days. Recharged water must be pumped in order to prevent losses due to flow to the sea. Technical details 90 kmr Watershed area 300 mm Average precipitation 3 mcm/year Average recharge 7,500 – 15,000 m3/hour Recharge rate 0.7 m/d Initial Infiltration rate 0.1 m/d Infiltration rate after continues recharge Sand dune cover Diversion reservoir Recharge reservoir Shiqma river basin Sea Recharge reservoir Pumping wells Diversion reservoir Grumusol and Rendezine soil cover Shiqma river During the time, the diversion reservoir is filled with alluvium. Every few years it is necessary to remove the alluvium deposits.
31
Sensitivity to salinization as a result of seawater intrusion
Storm runoff recharge in Shiqma basin Sensitivity to salinization as a result of seawater intrusion Telemetric system Subsurface Monitoring Device (SMD) Interface area Salt water Fresh water
32
Storm runoff recharge in Shiqma basin
SMD cable Monitoring well SMD box
33
Changes in conductivity value (salinity) in the monitoring well
Storm runoff recharge in Shiqma basin Changes in conductivity value (salinity) in the monitoring well
34
High load of organic matter . Good platform for biological activity.
Recharge of Sea of Galilee water into the Coastal Aquifer The project was stopped 20 years ago High load of organic matter . Good platform for biological activity.
35
\ Recharge of the Sea of Galili water in abandoned sandstone quarry
Schematic figure of changes in infiltration rate during the time \ The drop of the recharge rates was attributed to two reasons: High load of organic matter. Settling of silt and clay particles on the bottom of the ponds, originated from the side slopes of the ponds.
36
Monthly Recharge in Single-Purpose wells
Recharge in injection wells Types of injection wells Single-Purpose wells (unequipped) : 40 wells Dual – Purpose wells : 60 wells In single-purpose wells : Recharge rates decrease gradually during the recharge period, mainly in wells being recharged with sea of Galili water. This is due to biological activity and the development of biofouling on well screen. Monthly Recharge in Single-Purpose wells Sea of Galili water Mounting aquifer Well Development In dual-purpose wells: Infiltration rate decreased only slightly. Water pump was contaminated with high content of coliform bacteria and high turbidity due the high content of the organic matter in the Sea of Galili water. Broken - continuous
37
Injection wells are sensitive to clogging
Recharge in Injection wells Injection wells are sensitive to clogging The failure of some of the injection wells, was primarily because the quality of the water that was injected (Sea of Galili water with high load of organic matter ) Causes for clogging the injection wells At the time of drilling: Mud drilling residues on the screen walls (only by drilling methods using mud such as Reverse Circulation) At the time of injection: Penetration of air bubbles into the rock pores and blocking some of the flow paths During operation: Biological activity - accumulation of microorganisms on the screen wall (biofouling). High content of suspended solids. Chemical sedimentation of minerals on the screen wall. All these factors should be taken very seriously in injection wells planning, which are supposed to work for many years.
38
Summary Recharge is an excellent way to store water and to increase the amount of available water. With proper operation and maintenance, the SAT system should be considered an extremely attractive for effluent reclamation and storage. High organic load in the recharged water is causing decrease in infiltration rate due to accumulation of microorganisms on the screen wall (biofouling). Settling of silt and clay particles on the bottom of the ponds decreases recharge rates. Infiltration rate is decreasing during the recharge season. Flooding and drying regime and soil cultivation between the floods increase the infiltration rate. Injection wells are sensitive to clogging. The drilling, injection and operation should consider the local conditions and must be professionally planned to increase injection life time. The location selection of the recharge basin should consider the permeability of the unsaturated zone and the ability to pump the water.
39
THANK YOU
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.