Download presentation
Presentation is loading. Please wait.
Published byClaude Simpson Modified over 7 years ago
1
Astronomy 340 Fall 2005 Class #4 18 September 2007
2
Announcements HW #1 due Thursday A little out of order
Last time radiation (notes available today) This time tides
3
Solar Heating and Transport
Why? Astrophysics is all about how energy gets from point A to point B Sun responsible for most of energy in solar system Surface temperature Atmospheric temperature Mass loss from comets Temperature Measure of kinetic energy; E=(3/2)nkT n = # cm-3 k = Boltzman’s constant T = temp Thermal E = (1/2)mv2 so temp is related to velocity (consider simple case of escape velocity of an atmosphere from a planet a given distance from the Sun
4
Radiation Bf(T) = (2hf3/c2)[1/(ehf/kT-1)]
Λmax = (0.29/T) wavelength at the maximum of the BB curve f = frequency Units = erg s-1 cm-2 Hz-1 ster-1 In limit hf << kT, then Bf(T) ~ (2f2/c2)kT True in the radio regime
5
Radiation What do we measure? F = ΩB(T) (erg s-1 cm-2 Hz-1)
Integrate over frequency and solid angle F = 4π∫Bf(T)df = σT4 – this is a measure of the effective temperature – the flux emitted by any source can be described by a single temperature. Similarly, the Sun emits radiation as a function of its temperature
6
What happens when solar radiation meets a planetary surface?
Fin = (Lo/4πD2)πRp2 This heats the surface and the surface radiates….how much? In general L = 4πR2σT4 So if the planet’s luminosity arises solely from incoming solar flux, then Teq = [(L0/4πD2)(1/4σ)]1/4 equilibrium temperature just balances radiation in with radiation out.
7
Complications Albedo – the amount of radiation that is actually absorbed as opposed to being reflected or hitting at non- incident angles Fin=(1-Ab)(L0/4πD2)πRP2 But it’s even more complex… Albedo Rotation period what do you think the effect is angle of Sun
8
∫0∞(1-Av)(L0/4πr2)cos(α(t)-α)cos(δ0(t)-δ)dv
Heating of planetary surfaces via conduction… depends on the characteristics of the surface material Depends on temperature gradient Q = heat flux = -ζ (dT/dx) this is empirical X= distance ζ = thermal conductivity (erg s-1 cm-1 K-1
9
Properties of surfaces – thermal heat capacity and specific heat
CP = (dQ/dT)P = thermal heat capacity = amount of heat needed to raise the temp of one mole of matter by 1 degree K at constant P (can also do the same for volume) Specific heat = amount of energy needed to raise temp of 1 gram of material by 1 degree K at constant temperature and pressure. Usually shown as cP or cV. Related via: cP = (CP/mm) where mm is that mass of a mole of the stuff can substitute V for P.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.